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Abstract

Extreme precipitation events with large spatial extents may have more severe impacts

than localized events as they can lead to widespread flooding. It is debated how climate

change may affect the spatial extent of precipitation extremes, whose investigation often

directly relies on simulations from climate models. Here, we use a different strategy to

investigate how future changes in spatial extents of precipitation extremes differ across cli-

mate zones and seasons in two river basins (Danube and Mississippi). We rely on observed

precipitation extremes while exploiting a physics-based mean temperature covariate, which

enables us to project future precipitation extents. We include the covariate into newly devel-

oped time-varying r-Pareto processes using a suitably chosen spatial aggregation functional

r. This model captures temporal non-stationarity in the spatial dependence structure of

precipitation extremes by linking it to the temperature covariate, which we derive from

observations for model calibration and from debiased climate simulations (CMIP6) for pro-

jections. For both river basins, our results show negative correlation between the spatial

extent and the temperature covariate for most of the rain season and an increasing trend

in the margins, indicating a decrease in spatial precipitation extent in a warming climate

during rain seasons as precipitation intensity increases locally.
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1 Introduction

Extreme precipitation events with large spatial extents may have more widespread and severe

impacts than localized events, which is why they are associated with greater management

challenges. For example, they may lead to widespread flooding requiring the coordina-

tion of evacuation measures across river basins. Increases in the frequency and magnitude

of extreme precipitation events are evident both in observations (Contractor et al., 2021;

Kirchmeier-Young and Zhang, 2020; Myhre et al., 2019; Zeder and Fischer, 2020; Papalexiou

and Montanari, 2019) and future model simulations (Bao et al., 2017; Prein et al., 2017;

Wood and Ludwig, 2020; Brunner et al., 2021; Pendergrass et al., 2019; Swain et al., 2018;

Na et al., 2020). While precipitation intensities and the frequency of extreme events have

been shown to increase in wide parts of the world, it remains less clear how the spatial extent

of these events will change in a warming climate. Several observation-based and model-based

studies have suggested that the spatial extent of extreme precipitation events changes as a

result of warming temperatures. However, the direction of this change is yet unclear. Wasko

et al. (2016) have shown that observed precipitation extents in Australia decrease with tem-

perature, while Tan et al. (2021) have demonstrated increases in the observed spatial extent

of precipitation extremes for several regions over the Northern Hemisphere and in the west-

ern Pacific over 1983–2018. Such increases have also been found by Lochbihler et al. (2017)

who have revealed a clear relationship between event intensity and spatial extent using radar

data over the Netherlands. Discrepancies in changes of precipitation extents are not limited

to observation-based studies but extend to model-based studies predicting the potential fu-

ture evolution of precipitation spatial extents. Chang et al. (2016) have modeled a decrease

in storm size over large parts of North America under climate change and Guinard et al.

(2015) have projected both decreases and increases in storm area for different regions in
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North America. In contrast, Bevacqua et al. (2021) have projected increases in the spatial

extent of wintertime precipitation extremes over the Northern Hemisphere. These contrast-

ing observed trends and future projections of spatial extents of extreme precipitation may

be a result of different event and extent definitions (Rastogi et al., 2020). In addition, they

may result from a focus on different seasons and regions as spatial extents of extreme precip-

itation events have been shown to vary both seasonally and regionally (Chang et al., 2016;

Touma et al., 2018; Rastogi et al., 2020; Tan et al., 2021). Even though season and region

may be important determinants of future changes in spatial extents of extreme precipitation,

most existing studies focus on particular regions and do not differentiate between different

seasons. Therefore, we here explore how future changes in spatial extents of precipitation

extremes differ for different climate zones and seasons.

Past studies projecting future changes in extreme precipitation extents have mainly fo-

cused on climate model outputs for precipitation, even though regional climate models may

substantially underestimate or overestimate the spatial dependence of extremes depending

on the season (Yang et al., 2020). Here, we use a different strategy based on extreme-value

theory to study how future changes in spatial extents of precipitation extremes differ across

climate zones and seasons. We rely on observed precipitation extremes and exploit a physics-

based temperature covariate derived from climate model output to obtain future projections

of spatial precipitation extents, as the simulation of temperature variables by climate models

is generally considered as more reliable than the simulation of precipitation extremes (Aloy-

sius et al., 2016; Stephens et al., 2010). While extreme-value theory has been frequently

used to investigate temporal trends in extreme rainfall events (e.g., Olafsdottir et al., 2021),

the focus has been on detecting trends in the margins. Here, we focus on changes in the

spatial characteristics of precipitation when marginal trends have already been accounted

for. We associate larger extents with stronger spatial correlation among extreme values,
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and therefore with a longer tail-correlation range. If a relatively large precipitation intensity

occurs at a given location, other locations with a high positive tail-correlation to the given

location will also tend to show relatively large precipitation intensities. Therefore, if the tail-

correlation range is longer, large intensities will also occur at locations that are relatively

far from the given location, leading to a larger spatial extent of the overall precipitation

event. To get an objective measure of the extent of spatial extreme events, we thus propose

to compute the effective tail-correlation range, defined as the minimum distance at which

the tail-correlation drops below 0.05. In this paper, we concentrate on precipitation extents

in two river basins from different continents and climate zones, namely the Danube basin

(temperate-humid climate, Europe) and the Mississippi basin (continental climate transi-

tioning to humid subtropical, North America) as changes in precipitation extents may at

least partly lead to changes in widespread flooding (Brunner et al., 2020b), and we estimate

the effective tail-correlation range in each basin–season case separately.

There are two main ways to model spatial extremes in the literature; one uses pointwise

block maxima (Davison et al., 2012; Davison and Huser, 2015; Davison et al., 2019; Huser

et al., 2022) and the other one uses exceedances over a high threshold (Davison and Smith,

1990; Huser and Davison, 2014; Opitz et al., 2015; Thibaud and Opitz, 2015; Richards et al.,

2022). Computing pointwise block maxima from a complex dataset can lead to a signif-

icant loss of information, which can significantly undermine the effort to detect trends in

the dependence structure. In particular, it may not be easy to identify suitable covariates

in a regression context when daily data are aggregated (through the maximum operator)

to a monthly, seasonal, or yearly scale. Moreover, computing pointwise block maxima also

requires a relatively complete dataset. Selecting a complete sub-dataset can result in a sig-

nificant loss of information if the dataset contains many missing values. Therefore, modeling

exceedances over a high threshold is a preferable approach in this non-stationary trend detec-
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tion context as it prevents such loss of information. In this work, we develop a method based

on r-Pareto processes (Ferreira and de Haan, 2014; Dombry and Ribatet, 2015) to model

extreme precipitation peaks-over-threshold and their spatial characteristics. de Fondeville

and Davison (2018) developed a fast score-matching inference method for a class of r-Pareto

processes associated with log-Gaussian random functions that can be applied in high spatial

dimensions. Here, we extend this approach to incorporate a time-varying semivariogram in

the dependence structure. Such a semivariogram allows us to estimate the time-varying spa-

tial extent of precipitation extremes by incorporating a well-chosen aggregated temperature

covariate into the dependence model. We apply this model to predict the spatial extent of

precipitation extremes under different climate change scenarios. Specifically, to derive future

projections of precipitation extents, we consider historical and future climate model runs

(using different CMIP6 simulations) based on the Shared Socioeconomic Pathways (SSP)

2-4.5 and 5-8.5, which represent “middle-of-the-road” and more pessimistic “fossil-fueled

development” scenarios, respectively, and we then report projected changes in the effective

tail-correlation range under each scenario.

This paper is organized as follows: we present the dataset and application examples in

Section 2. In Section 3, we first detail how our physics-based temporal covariate is designed,

and we then describe the non-stationary marginal and r-Pareto dependence models fitted to

our precipitation dataset. For margins, we adopt a three-step generalized additive modeling

strategy and detail each of the steps precisely. In Section 4, we present the results from

the dependence model fit and report the estimated spatial extent of precipitation extreme

events under different climate change scenarios for the different basin–season cases under

study. We discuss statistical and hydro-meteorological considerations in Section 5, and we

finally conclude in Section 6 with some perspective on future research and possible extensions.
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Table 1: Summary of characteristics of the two study regions: region name, continent,
climate zone, area (km2), average elevation given as meters above sea level (m.a.s.l.), and
the number of available precipitation and temperature gauges.

Region Continent Climate zone Area (km2) Elevation (m.a.s.l.) Number of gauges
Danube Europe Temperate-humid 797335 462 125
Mississippi North America Continental to subtropical 3244506 682 2229
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(a) Map of Danube river basin.
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(b) Map of Mississippi river basin.

Figure 1: Map of Danube (left) and Mississippi (right) river basins with black dots repre-
senting the precipitation gauges. The color scale indicates elevation (m.a.s.l.).

2 Dataset

2.1 General description

We focus on two large river basins in different climate zones whose characteristics are sum-

marized in Table 1 and Figure 1. The dataset consists of observed daily precipitation data in

millimeters and daily temperature averages in degrees Celsius from 125 monitoring stations

in the Danube river basin (Europe) and from 2229 monitoring stations in the Mississippi

river basin (North America). The dataset is publicly available from the Global Historical

Climatology Network (GHCN) for the period 1965–2015. There are in total 60% of miss-

ing values in the Danube region and 77% of missing values in the Mississippi region, which

still leaves a considerable number of non-missing values during the whole observation period

given the length of the time series and the number of monitoring stations.
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2.2 Exploratory analysis

Before developing a model for spatial precipitation, we explore the characteristics of daily

precipitation in the two river basins, i.e., temporal trends, seasonal patterns, and possible

correlations with temperature. Let S ⊂ R2 denote the spatial domain under study (either the

Danube basin or the Mississippi basin), and D = {s1, . . . , sK} ⊂ S be the set of monitoring

stations, with K = 125 (Danube basin) and K = 2229 (Mississippi basin). We write Yi,j,k

to denote the daily precipitation amount on the i-th day during the j-th year at the k-th

station sk, where j ∈ {1, . . . , 51}, i ∈ {1, . . . , nj} with nj either equal to 365 or to 366 for

leap years, and k ∈ {1, . . . , K}. In order to conveniently visualize the seasonal behavior

of the precipitation data across all stations in a single plot, we compute the daily average

Y i,·,k = 1
51

∑51
j=1 Yi,j,k for each day i and station sk, and then show these values as heatmaps

in the top panels of Figure 2. This helps to explore the presence of any seasonal patterns

in the data. Due to the high percentages of missing values in the dataset, we only compute

the average when at least 10 data points are available. Otherwise, we treat the average Y i,·,k

as missing. Precipitation displays a clear seasonal pattern and variation with respect to

the elevation of the monitoring stations. Both river basins show the strongest precipitation

intensities during the summer. The Danube river basin is characterized by slightly increasing

precipitation with increasing elevation (i.e., lower temperature). In contrast, the Mississippi

river basin shows increasing precipitation with decreasing elevation (i.e., higher temperature).

We also compute the annual average Y ·,j,k = 1
nj

∑nj

i=1 Yi,j,k for each year j and station sk

to explore whether there is any global temporal trend in precipitation intensities. We only

calculate the average if at least 20 data points are available in this case. The bottom panels

of Figure 2 show heatmaps of Y ·,j,k, revealing patterns associated with elevation that are

consistent with those identified in the top panels of Figure 2. An annual temporal trend

signal, however, cannot be clearly detected from these visual diagnostics. Thus, potential
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Figure 2: Heatmaps illustrating the seasonal (top) and year-to-year (bottom) variations of
daily precipitation intensities (mm) for the Danube basin (left) and Mississippi basin (right).
Top: values averaged across years, i.e., Y i,·,k = 1

51

∑51
j=1 Yi,j,k, plotted for each day i of the

year (x-axis), and station sk sorted by elevation (y-axis). Bottom: values averaged over
each day of the year, i.e., Y ·,j,k = 1

nj

∑nj

i=1 Yi,j,k with nj ∈ {365, 366}, plotted for each year

j (x-axis), and station sk sorted by elevation (y-axis). Blue, green, yellow, and grey colors
represent high, medium, low, and missing precipitation values, respectively.

temporal trends in the margins and the dependence structure of extreme precipitation remain

to be assessed using more sophisticated extreme-value regression models. Our approach is

discussed in the following sections.
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3 Methodology

3.1 Designing a suitable physics-based temporal covariate

The choice of a temporal covariate for use in marginal (Section 3.2) and dependence (Sec-

tion 3.3) modeling is crucial because it determines the form of nonstationarity that the model

can capture. In addition, it drives future projections, thus impacting our conclusions about

the evolution of precipitation intensities and spatial extents. Hence, we need to carefully

design a covariate that (i) has a physical meaning; (ii) is relevant for predicting extreme

precipitation intensities and extents (i.e., it must be “correlated” to intensities and spatial

extents, both expressed on the logarithmic scale here); (iii) reflects climate conditions across

the whole river basin under study; and (iv) can be relatively easily projected into the future

in a physically justifiable way under various climate change scenarios. Spatially-aggregated,

basin-specific air temperature satisfies all of these four requirements, as several studies have

highlighted the physical link between temperature and precipitation amounts, which is also

confirmed in Figure 2. There is indeed a wide consensus that global warming will lead to

an increase in the water holding capacity of the atmosphere, and thus to more intense pre-

cipitation (Pendergrass and Knutti, 2018; Mandel and Lipovetsky, 2021; Fowler et al., 2021;

Muller et al., 2011). The regional response of precipitation to global warming may vary,

but a positive correlation between temperature and precipitation intensity can in general be

expected, even though the link with spatial extents is less clear. Moreover, air temperature

is among the variables that can be the most reliably reproduced and predicted with climate

models, though there are still often systematic biases (Hausfather et al., 2020). We note,

however, that affine time-independent biases corresponding to systematic shift or rescaling

of the “true” values, e.g., when modifying the temporal covariate tempt as a+ b× tempt for

some constants a ∈ R and b 6= 0, would still produce the same extrapolation if combined
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with a generalized linear model of the form η = g(λ0 + λ1 × tempt) for some link function

g(·), as the biases would simply be absorbed into the intercept and slope coefficients λ0 and

λ1 but the resulting estimate of η would remain unchanged. Nevertheless, biases are typi-

cally not perfectly time-independent and may also vary spatially (though this might cancel

out after spatial aggregation). Furthermore, temperatures simulated from historical climate

model runs may be able to represent long-term trends, but often lack correspondence with

the actual observations, because climate models not conditioned on observational weather

data are “climate simulators” rather than “weather simulators”. These issues are problem-

atic for detecting a meaningful association between observed precipitation and simulated

temperature. Therefore, temperature data from climate model outputs may not be the most

suitable choice for modeling observed precipitation extremes in the historical period (i.e.,

for model fitting), while still being very helpful (after adjustment) for future extrapolation.

Hence, we here choose to fit our model (further detailed in Sections 3.2 and 3.3) using a

temperature covariate derived from real daily measurements at the same monitoring sites

as our precipitation data, but we then use (properly debiased) temperatures from climate

model outputs (under different greenhouse gas emission scenarios) for future extrapolation.

More details on the choice of climate models and climate change scenarios used for future

projections, as well as our simple bias-correction procedure, are provided in Section 4. In

general, climate model outputs show less variability than observations at weather stations,

so we here use spatial temperature averages over the entire river basin, such that the vari-

ability of the temperature covariate can be assumed to be comparable between the two data

sources. To compute basin-wide temperature averages, a practical problem is that observed

daily temperatures are not available at every location within the spatial domain and time

point during the historical period, and they also contain almost the same number of missing

values as the precipitation data. To overcome these issues, we used a kriging scheme to im-

10



pute missing temperature observations spatially, for each time point separately. Specifically,

we first fit a spatial generalized additive model (GAM) with a Gaussian response distribution

and identity link function, defined as

tempi = f(loni, lati) + f(elevi) + f(dayi) + f(yeari) + εi, i = 1, 2, . . . , (1)

where tempi is the i-th temperature measurement, characterized by its longitude (loni), lat-

itude (lati), and elevation (elevi) of the corresponding monitoring station, as well as the

time of observation (calendar day, dayi, and year, yeari), where f represents penalized cubic

spline functions (with bivariate splines implemented as tensor products), and εi denotes in-

dependent and identically distributed (i.i.d.) zero-mean Gaussian noise. After this model is

estimated, we fit a (stationary) spatial exponential covariance function to the fitted residuals

ε̂i, treating the spatial replicates as independent. Finally, we use this Gaussian model to in-

terpolate the mean temperature on a fine grid within each river basin for each day separately

conditional on the observed data. Specifically, we apply our kriging scheme and interpolate

daily temperatures at 442 and 1625 gridded locations in the Danube and Mississippi regions,

respectively, which represent a resolution of 0.4622◦× 0.4622◦ approximately in latitude and

longitude. Then, we use these spatially-imputed daily temperatures to estimate basin-wide

temperature averages for each day. Finally, we average for each day t, the kriged basin-wide

temperature over the 30-day time window preceding the day of the event (i.e., ending at time

index t) to account for the fact that extreme precipitation events may be the result of several

consecutive days of “favorable” climate conditions. Our final temporal covariate as shown in

Figure 3, denoted by tempt, is then the spatiotemporal average of daily temperature over the

entire basin and a monthly moving window, further standardized by subtracting its mean

and dividing by its standard deviation to stabilize inference. We consider this 30-day moving

window a good indicator of the climate conditions in each river basin at each time t and

therefore expect this temperature covariate to be correlated with extreme precipitation and
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Figure 3: Plots of the temporal covariate, tempt, for the Danube river basin (left) and
Mississippi river basin (right) based on actual temperature observations (light blue), as
well as the projected temperature covariate between the year of 2016 and the year of 2100,
averaged across simulations of three different CMIP6 climate models runs, namely AWI,
MIROC, and NorESM, under the Shared Socioeconomic Pathways (SSP) 2-4.5 (dark gray)
and 5-8.5 (light red), described in detail in Section 4.3.

to provide a sound framework for future extrapolation. Figure 3 also shows the projected

temperature covariate until the end of the 21st century, averaged across simulations of three

different climate model runs under the Shared Socioeconomic Pathways (SSPs) 2-4.5 and

5-8.5. Temperature projections for each individual climate model run are shown in Figure 1

of the Supplementary Material. This plot indicates that climate change seems to affect the

Danube river basin more strongly than the Mississippi river basin.

3.2 Marginal modeling

We now detail our marginal model, before presenting how spatial dependence is modeled

in Section 3.3. As shown in Figure 2, the precipitation data show a clear seasonality and

are related to elevation. Hence, it is important to account for the non-stationarity in the

marginal distributions. Our proposed marginal model is similar to the three-step model of

Opitz et al. (2018), except that we use a semi-parametric frequentist approach rather than

a Bayesian latent Gaussian model. Let Ys,t denote the precipitation data (mm) at time t

and site s ∈ S, where S denotes the spatial domain. Moreover, through our modeling, we

found that more than 80% of the precipitation data are smaller than 10mm. By removing

the data that are below 10mm, the marginal fits are considerably improved, and also makes
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the computational burden much lighter—we thus initially ignore these values. Our overall

marginal model may be built in consecutive steps using the following three GAMs, defined

in terms of different response distributions based on the underlying linear predictors ηGam
s,t ,

ηLogs,t and ηGP
s,t , respectively, capturing spatiotemporal characteristics in the bulk and the tail:

(i) Gamma model for the bulk: we assume that (Ys,t− 10) | Ys,t > 10 ∼ Gamma, with

spatiotemporal mean exp(ηGam
s,t ) and constant shape parameter κ > 0. We have found

that the Gamma distribution performs quite well in our case, especially given that it

here only serves the purpose of estimating a high spatiotemporal quantile us,t.

(ii) Logistic model for occurrence indicators of high threshold exceedances: we

assume that I(Ys,t > us,t) ∼ Bernoulli, with spatiotemporal mean logit−1(ηLogs,t ) =

exp(ηLogs,t )/{1 + exp(ηLogs,t )}, where us,t is the estimated 90% quantile from the Gamma

model detailed in (i), and I(·) is the indicator function;

(iii) Generalized Pareto (GP) model for high threshold exceedances: we as-

sume that (Ys,t − us,t) | Ys,t > us,t ∼ GP, with spatiotemporal scale parameter

us,t exp(ηGP
s,t ) and constant shape parameter ξ ∈ R; that is, Pr(Ys,t > us,t + y | Ys,t >

us,t) = [1 + ξy/{us,t exp(ηGP
s,t )}]−1/ξ, for 0 < y < y+, with y+ = ∞ if ξ ≥ 0 and

y+ = −us,t exp(ηGP
s,t )/ξ if ξ < 0, and us,t defined as in (ii).

We here use the GP distribution because it is supported by extreme-value theory as the

only possible limiting distribution for (properly rescaled) high threshold exceedances,

when the threshold tends to the upper endpoint of the distribution. Therefore, it

guarantees robust marginal tail extrapolations.

In the model specifications above, each of the terms ηGam
s,t , ηLogs,t and ηGP

s,t is assumed to follow

the canonical form

ηs,t = f(lons, lats) + f(elevs) + f(dayt) + β × tempt,
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adopting a notation similar to (1), but using a slightly different structure than in the kriging

temperature model. In particular, we here include the temperature covariate, tempt, as a

linear fixed effect with regression coefficient β, in place of the nonlinear yearly effect, given

that tempt can capture time trends that we can then more easily project into the future using

by climate models. Such GAMs can be conveniently and efficiently fitted to data observed

at the monitoring sites D = {s1, . . . , sK} ⊂ S using standard functions in the R package

evgam. As demonstrated in Section 4.1, the proposed marginal model fits the data very well

and captures their spatiotemporal characteristics satisfactorily.

3.3 Dependence modeling with time-varying r-Pareto processes

We now model the spatial dependence structure of extreme precipitation, in order to es-

timate their spatial precipitation extent and assess whether it has changed over time. To

this end, we model spatial threshold exceedances defined in terms of a “risk functional”

r using r-Pareto processes associated with log-Gaussian stochastic processes (Dombry and

Ribatet, 2015; de Fondeville and Davison, 2018), whose max-stable counterparts are the

so-called Brown–Resnick processes (Brown and Resnick, 1977; Kabluchko, 2009). Modeling

r-threshold exceedances allows us to keep more information and to borrow more strength

across the spatiotemporal domain in comparison with the classical block maximum approach,

while also keeping flexibility in the way spatial extreme events are defined through r. The

risk functional r must be nonnegative and homogeneous but is otherwise arbitrary, and

can, for example, be the spatial average, maximum, or minimum over the entire domain S

or a (potentially finite) subdomain, such as D = {s1, . . . , sK} ⊂ S corresponding to the

monitoring stations themselves. The theoretical justification for using r-Pareto processes is

that they naturally appear as the only possible limits of (renormalized) spatially-indexed

threshold exceedances as the threshold increases arbitrarily. This result directly extends the
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univariate GP limit distribution to the spatial setting, and we summarize it in the following

theorem. We denote by C+(S) the space of continuous nonnegative functions on S, and let

r be a (nonnegative and homogeneous) risk functional on C+(S).

Theorem 1 (Dombry and Ribatet (2015)). Let Y be a random process defined on a compact

nonempty domain S with α-Pareto margins, i.e., Pr(Y > y) = y−α, y ≥ 1, for some α > 0,

and let r be a continuous and homogeneous risk functional. If

Pr
(
u−1Y ∈ · | r(Y ) > u

)
→ Pr (Z ∈ · ) , u→∞,

with weak convergence in C+(S), then, either Pr (r(Z) = 1) = 1 or Z is a simple r-Pareto

process with tail index 1/α and spectral measure σr, which satisfies the following conditions:

(1) The random variable r(Z) has an α-Pareto distribution;

(2) The random variable r(Z) (spatial aggregate) and the r-normalized process Z/r(Z) (spa-

tial profile) are stochastically independent, and Z/r(Z) has probability distribution σr

with support domain {f ∈ C+(S) : r(f) = 1}.

Here, we set α = 1 without loss of generality, which leads to the unit Pareto distribution

for margins and the aggregated functional r(Y ). Note that this choice is not a restriction in

practice, as we can always use the estimated marginal model to standardize the data to a

common scale, e.g., unit Pareto, using the probability integral transform.

To be more specific, we here consider a flexible class of r-Pareto processes based on log-

Gaussian processes. Given a zero-mean Gaussian process X̃ with stationary increments, we

write X(s) = exp{X̃(s) − E[X̃(s)2]/2}, which ensures E[X(s)] = 1. Based on the process

X, we can construct an r-Pareto process whose distribution is fully characterized by the

combination of r, α and γ(h) = E[{X̃(h) − X̃(0)}2]/2, the semivariogram of X̃, where

h denotes the spatial lag. A general characterization of r-Pareto processes for arbitrary
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risk functionals r, and also for the corresponding limits leading to max-stable processes or

Poisson point processes, is based on the so-called exponent measure Λ defined for Borel sets

in C+(S) \ {0}, where 0 refers to the function that is constant and identically equal to zero.

Then, the probability distribution of the r-Pareto process Z can be written as follows:

Pr(Z ∈ (·)) =
Λ((·) ∩ {f ∈ C+(S) : r(f) ≥ 1})

Λ{f ∈ C+(S) : r(f) ≥ 1}
,

which means that the probability measure is obtained by scaling the measure of Λ for r-

exceedances above 1 (which is known to be positive for r-functionals that we use here) to

be equal to unity, and by truncating the measure where r does not exceed the threshold

1. For the log-Gaussian construction with X(s) defined as above, the measure Λ is fully

characterized by the following property, which must hold for any positive function u(s) ∈

C+(S):

Λ

{
f ∈ C+(S) : max

s∈S

f(s)

u(s)
> 1

}
=

∫ ∞
0

(
1− Pr

(
max
s∈S

X(s)

u(s)
≤ 1

r

))
1

r2
dr. (2)

By applying the transformation of variable v = 1/r and using the fact that E[Q] =
∫∞
0

Pr(Q ≥

q)dq for a generic nonnegative random variable Q ≥ 0, the expression in (2) can further be

simplified as E[maxs∈S X(s)/u(s)]. The probability density of Λ when S is a finite set of

locations is available in closed form for these log-Gaussian extremal models (Engelke et al.,

2014).

In this work, our goal is to assess whether the spatial extent of extreme precipitation

events has changed over time, and to provide a robust modeling framework that can pro-

vide reliable future projections. Therefore, we develop and fit r-Pareto processes that can

capture non-stationary temporal variations in the spatial dependence structure of extreme

precipitation, which directly controls the spatial extent of extreme events. Specifically, we

link the spatial dependence range of precipitation extremes on day t to an informative tem-

poral covariate, which is taken to be the same spatiotemporal temperature average, tempt,
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proposed and justified in Section 3.1. Mathematically, we define the (spatial) semivariogram

γ on day t as

γ(h; t) =

{
‖h‖

exp(λ0 + λ1 × tempt)

}ν
, (3)

where h is the spatial lag vector, ν ∈ (0, 2] is a smoothness parameter, λ0 ∈ R is the baseline

spatial range parameter (on the log scale), and λ1 ∈ R controls the extent to which the

temperature covariate tempt affects the range parameter, and thus how the spatial extent of

extreme precipitation changes over time. The Gaussian process X̃ in Section 3.3 associated

with this semivariogram is known as fractional Brownian motion, for which we can set

X̃(0) = 0, such that E[X̃(0)2] = 0 in the construction of the process X in Section 3.3.

The spatial extent of extreme precipitation for each time point is measured by the effective

tail-correlation range, defined as the minimum distance ‖h‖ in kilometers such that the

tail-correlation coefficient drops below 0.05, i.e.,

Pr[{Ŷs+h,t ≥ u | Ŷs,t ≥ u, r({Ŷs,t}s∈S) ≥ u] = 2− 2Φ

[{
Γ(h; t)

2

}1/2
]

= 0.05, (4)

where Φ is the standard Gaussian cumulative distribution function. Our definition in (4) is

analogous to the common “effective correlation range” in classical geostatistics, but adapted

to extremes based on the well-known tail-correlation χ-measure (Huser and Wadsworth,

2022). To illustrate this concept, Figure 4 shows three simulated r-Pareto processes based

on log-Gaussian processes with α = 5 (i.e., marginal tail index 1/α = 0.2) and variogram

γ(h) = ‖h‖/λ, on a 50×50 grid, where the different panels display realizations for λ = 2, 5, 10

(left to right). We report the associated effective tail-correlation range in the title of each

panel. When λ increases, the spatial variability of the values clearly decreases and therefore

the dependence strength increases, which is also indicated by the values of the effective

tail-correlation range.

Efficient inference for r-Pareto processes in high dimensions has been developed by de

Fondeville and Davison (2018) using gradient-score matching, a technique that has been im-
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Figure 4: Three simulated r-Pareto processes (with the same random seed) on a 50×50 grid
based on log-Gaussian processes with γ(h) = ‖h‖/λ, λ = 2, 5, 10 (left to right), and α = 5.

plemented in the R package mvPot for stationary r-Pareto processes associated with extremal-

t max-stable processes and Brown–Resnick max-stable processes. Here, we generalize and ex-

tend the R code by de Fondeville and Davison (2018) to incorporate temporal non-stationarity

and use it to detect potential temporal trends in the dependence structure.

4 Estimation results and future projections

4.1 Marginal estimation

To analyze our precipitation data, we start by fitting the three-step model detailed in Sec-

tion 3.2 for each of the two river basins considered in this work. After model estimation, we

can transform the data to a common scale by exploiting the probability integral transform.

To demonstrate the goodness-of-fit of our marginal model, we show Quantile-Quantile (QQ)

plots in Figure 5 on the uniform scale. These QQ-plots show that the marginal model fits

the data very well overall as the black dots are well aligned along the diagonal. To proceed

with the dependence fit (Section 3.3), we further transform the data to the unit Pareto scale,

i.e., with distribution Pr(Y ≤ y) = 1− y−1, y ≥ 1.

Marginal return levels are commonly used as simple and intuitive measures of marginal

risk. The M -year return level is defined as the level that is expected to be exceeded once
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Figure 5: QQ-plots for the marginal fit in the Danube river basin (3 leftmost columns) and
the Mississippi river basin (3 rightmost columns). The data have been transformed to the
uniform scale. For each basin (with its corresponding 3 × 3 panels), the top-left QQ-plot
shows the data pooled from all the stations in each region. The other eight QQ-plots show
the data at randomly selected stations in each basin.

every M years, under stationary conditions. It is simply a high marginal quantile. By

analogy, in a changing climate, we can similarly define return levels as time-varying marginal

quantiles corresponding to low exceedance probabilities q, though the original interpretation

is now slightly different. Based on the marginal model from Section 3.2, return levels for an

exceedance probability q < 0.1, denoted by yqs,t, can be estimated for each station s ∈ S and

time t as

ŷqs,t = 10 + ûs,t + GP−1
(

1− q

pûs,t
; σ̂s,t, ξ̂

)
,

where ûs,t is the estimated 90% quantile from the Gamma model, pûs,t is the estimated

threshold exceedance probability from the logistic model, and σ̂s,t and ξ̂ are the estimated

scale and shape parameters from the GP model, respectively, with GP−1 indicating the GP

quantile function. In both the Danube and Mississippi river basins, the shape parameter

estimate is ξ̂ = 0.12, which implies that the precipitation distribution is moderately heavy-

tailed. Figure 6 shows the estimated (non-stationary) seasonal averages of return levels for
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Figure 6: The estimated seasonal average (non-stationary) return level for the exceedance
probability q = 1/(100× 365) for each season at Station 110 in the Danube basin (left), and
Station 478 in the Mississippi basin (right), based on the temperature covariate derived from
observational data (solid; 1965–2015) or predicted (2016–2100) from CMIP6 climate model
simulations under SSP 2-4.5 (dashed) and SSP 5-8.5 (dotted).

q = 1/(100 × 365) (i.e., for a return period of 100 years under stationary conditions) for

the stations with the largest average precipitation in the two river basins, namely Station

110 in the Danube basin and Station 478 in the Mississippi basin, based on the temperature

covariate derived from observational data (1965–2015) or predicted (2016–2100) from CMIP6

climate model simulations under two Social Socioeconomic Pathways (and averaged across

three runs). The estimated return levels derived from each individual climate model run

are presented in Figure 2 of the Supplementary Material. Results show a clear seasonality

and a discernible increasing trend in the precipitation return levels for the Danube region,

especially during the summer time. However, the return levels seem to remain more stable for

the Mississippi region, though with a slight negative trend overall. This result is consistent

with the results obtained by Olafsdottir et al. (2021), who have shown that the intensity

distribution remains relatively stable for the northeastern United States.

4.2 Spatial extreme dependence estimation

To study seasonal differences in spatial dependence characteristics of extreme precipitation,

we proceed by fitting the proposed time-varying r-Pareto process separately for each season

and each basin. Let Ŷs,t denote the random precipitation process at time point t and location
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Table 2: Number of spatial extreme events selected for each basin and season. Note that the
number of selected events is the same for both risk functionals, r1 and rξ̂, and the number
of extreme events that are common to both risk functionals is shown in parentheses.

Basin Winter Spring Summer Fall

Danube 62 (40) 118 (76) 133 (90) 100 (59)
Mississippi 115 (67) 225 (97) 232 (118) 206 (98)

s ∈ S, transformed to the unit Pareto scale by applying the probability integral transform

combined with the fitted marginal distribution; recall Sections 3.2 and 4.1. As mentioned

in Section 3.3, extreme precipitation events are defined as {{Ŷs,t}s∈S : r({Ŷs,t}s∈S) ≥ u},

for some high threshold u and risk functional r. We here choose the parametric family

rθ({Ŷs,t}s∈S) =
(
K−1

∑K
k=1 Ŷ

θ
sk,t

)1/θ
, with θ > 0, where D = {s1, . . . , sK} ⊂ S is the set of

monitoring stations. Note that rθ is a norm only when θ ≥ 1. We here set either θ = 1, which

corresponds to summing observations on the Pareto scale across all stations, or θ = ξ̂ ≈ 0.12,

which first transforms observations back to their original data scale before summing, thereby

giving more weight to smaller values. Moreover, for reasons of estimation stability, we only

consider spatial replicates {Ŷs,t}s∈S that have at least 5 non-missing values at the sites in D.

The threshold u is selected to be the 80% empirical quantile of observed rθ({Ŷs,t}s∈S) values,

computed from at least 5 non-missing values across stations. As we have already discarded

precipitation amounts that are smaller than 10 mm in the marginal modeling phase, the 80%

quantile is relatively extreme and still provides sufficient data points to estimate the spatial

tail dependence structure. The resulting numbers of selected events in each basin–season

case are summarized in Table 2. Note that while the number of selected events is the same

for both r-functionals, namely r1 and rξ̂, the selected events themselves are not identical,

and the number extreme events common to both risk functionals is presented in parentheses.

About half of those selected events are the same using these two risk functionals.

Table 3 and Figure 7 report parameter estimates from the r-Pareto process fit for each

21



Table 3: Parameter estimates ν̂, λ̂0, λ̂1 of the r-Pareto model (3) fitted to spatial extreme
events from each season and river basin, as well as for both risk functionals, r1 and rξ̂.
The numbers within parentheses are 95% confidence intervals based on 300 nonparametric
bootstrap fits and significant estimates of the trend coefficients λ1 are highlighted in bold.

Basins Danube Mississippi

r ν̂ λ̂0 λ̂1 ν̂ λ̂0 λ̂1

Winter r1 0.29 2.60 0.16 0.29 3.97 0.02
(0.24,0.36) (2.00,3.10) (-0.21,0.51) (0.26,0.32) (3.75,4.20) (-0.19,0.26)

rξ̂ 0.24 3.74 0.01 0.26 5.48 0.11

(0.20,0.29) (3.37,4.06) (-0.34,0.40) (0.24,0.28) (5.29,5.67) (-0.06,0.31)

Spring r1 0.26 2.17 -0.24 0.28 4.07 -0.17
(0.21,0.34) (1.61,2.71) (-0.62,0.09) (0.26,0.30) (3.93,4.20) (-0.29,-0.05)

rξ̂ 0.23 3.61 -0.34 0.27 4.98 -0.49

(0.19,0.29) (3.25,3.89) (-0.67,-0.06) (0.26,0.28) (4.88,5.07) (-0.59,-0.38)

Summer r1 0.24 1.81 -0.23 0.24 3.22 -0.07
(0.18,0.34) (0.93,2.62) (-0.70,0.21) (0.22,0.26) (3.05,3.40) (-0.22,0.06)

rξ̂ 0.23 3.57 -0.23 0.24 4.12 -0.18

(0.19,0.33) (3.20,3.90) (-0.55,0.09) (0.23,0.25) (4.04,4.21) (-0.30,-0.09)

Fall r1 0.27 2.78 0.22 0.27 4.32 0.00
(0.22,0.44) (2.19,3.37) (-0.18,0.56) (0.26,0.29) (4.12,4.51) (-0.20,0.20)

rξ̂ 0.27 3.99 0.25 0.28 5.52 -0.09

(0.23,0.34) (3.67,4.23) (-0.06,0.49) (0.27,0.29) (5.37,5.66) (-0.22,0.05)

basin and season, as well as both r-functionals for comparison. Bootstrap-based 95% con-

fidence intervals are shown in parentheses in Table 3 and illustrated graphically through

modified boxplots in Figure 7. More precisely, these confidence intervals are computed from

300 nonparametric bootstrap fits, whereby the spatial extreme events are resampled with

replacement and the r-Pareto dependence model refitted to the resampled extreme events

300 times. The modified boxplots here display five empirical quantile levels (namely 2.5%,

25%, 50%, 75%, and 97.5%) from the nonparametric bootstrap estimates, while the solid

dots in each modified boxplot represent point estimates based on original data. Interestingly,

we find that the estimated regression coefficient λ̂1 (i.e., the slope of the temperature covari-

ate, tempt) is always negative for both the Danube and Mississippi basins during the major
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Figure 7: Parameter estimates ν̂, λ̂0, λ̂1 (left to right) from the r-Pareto dependence model
(3) fitted to spatial extreme events from the Danube (top) and Mississippi (bottom) basins
for each season, based on the risk functionals r1 (red) and rξ̂ (blue). Each panel displays
modified boxplots of the 300 nonparametric boostrap estimates showing 2.5%, 25%, 50%,
75% and 97.5% quantiles, as well as point estimates from the original data (solid dots). The

dashed grey vertical line at zero in the λ̂1 plots represents the “no trend” reference.

rain seasons, i.e., summer and spring, especially when θ = ξ̂. In this case, the λ̂1 estimates

are statistically significant in three out of the four cases (Danube in Spring, Mississippi in

Spring, and Mississippi in Summer) and the last case (Danube in Summer) misses signifi-

cance by a small margin only. Therefore, our results indicate that the spatial dependence

range (and thus, the spatial extent of extreme precipitation) tends to decrease as tempera-

ture increases during the major rain seasons. During winter and fall, our results suggest that

an opposite pattern usually tends to prevail for the two basins (i.e., with slightly positive

regression coefficients), though the effects are not statistically significant. We also observe

that, overall, our results are consistent across the risk functionals r1 and rξ̂, regardless of the

statistical significance of the λ̂1 estimates, which suggests that our conclusions are robust to

the definition of “spatial extreme event”.

In summary, our findings show decreases in precipitation extents with increases in tem-
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perature in both the Mississippi region and the Danube region during the major rain seasons,

which suggests a further decline in a warming climate. In the next section, we further exploit

our fitted model to investigate potential changes in spatial extents of extreme precipitation.

Specifically, we make projections until the end of the 21st century by relying on our fitted r-

Pareto process combined with the proposed temperature covariate stemming from (debiased)

climate model outputs under different climate change scenarios.

4.3 Future spatial extent projections

To evaluate the spatial extent of extreme precipitation in the future, we here construct a tem-

perature covariate similar to the one used for training the model by exploiting daily temper-

atures predicted by climate models from the sixth Coupled Model Intercomparison Project

(CMIP6). We considered a subset of global circulation models (GCMs) following suggestions

by Brunner et al. (2020a) who provide a ranking of GCMs based on historical performance,

and eventually selected three GCMs that are highly ranked and also available in the Coper-

nicus data base (https://www.copernicus.eu/en/access-data) with relatively high res-

olution. Specifically, the selected GCMs are AWI-CM-1-1-MR (AWI), MIROC6 (MIROC),

and NorESM2-MM (NorESM) with resolutions of 0.9351◦ × 0.9375◦, 1.4008◦ × 1.4072◦, and

0.9424◦ × 1.25◦ approximately in latitude and longitude, respectively. We also consider

two future climate change scenarios, known as Shared Socioeconomic Pathways (SSPs), and

specifically choose relatively optimistic (SSP2-4.5) and pessimistic (SSP5-8.5) scenarios. To

be consistent with the observed temperature covariate used to fit the models, we then apply

the same kriging scheme as described in Section 3.1 to the climate outputs. After kriging,

the corresponding spatiotemporal temperature values are averaged and renormalized as de-

scribed in Section 3.1. Since simulated temperature from GCM outputs is often subject to

systematic biases, and thus not perfectly aligned with observed temperatures, it is neces-
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sary to bias-correct climate model outputs. Here, we adopt a basic bias-correction approach

and simply subtract, for each season and basin separately, the difference between the aver-

age temperature of GCM simulations over 2015–2020 and observations over 2010–2015 by

assuming that there is no significant change in the temperature averages over the periods

2010–2015 (for observations) and 2015–2020 (for simulations). While this approach is quite

basic, it adequately removes the unrealistic visual discontinuity between observations and

simulations in 2015, while preserving the overall temporal trend. This procedure yields six

possible temperature covariates (i.e., one per GCM type and SSP scenario) for each season

and basin, that we can exploit for future extrapolation. To summarize that information con-

cisely and to derive a “representative” temperature covariate across the GCMs considered,

we also compute the average projected temperature across the three GCMs, but separately

for each SSP scenario. We here only report the results from the average across GCMs, and

present the separate GCM-specific results in the Supplementary Material.

Using our debiased climate model-based temperature covariate, we compute the effec-

tive tail-correlation range for each time point, defined earlier in (4). Figure 8 shows the

projected effective tail-correlation range on the logarithmic scale, estimated from our fitted

model based on the rξ̂-functional, for each season, each basin, and the two different climate

change scenarios (SSP2-4.5 and SSP5-8.5) after averaging the temperature covariate across

GCMs (recall Figure 3). In the Supplementary Material, we show figures of the projected

effective tail-correlation range that is derived from each individual GCM. The plots show

that differences between the changes in the effective tail-correlation range under the SSP

2-4.5 and SSP 5-8.5 scenarios are larger for the Danube basin than for the Mississippi basin.

These findings suggest that climate change may have stronger impacts on spatial precipita-

tion extents in the Danube region than in the Mississippi region. As suggested by the λ̂1

estimates from Table 3, Figure 8 shows that the effective tail-correlation range is expected

25



10.5

11.0

11.5

12.0

12.5

1965 1985 2005 2025 2045 2065 2085

Year

Lo
ga

rit
hm

ic
 r

an
ge

Group

Obs

SSP 2−4.5

SSP 5−8.5

Season

Fall

Spring

Summer

Winter

Danube; AVG

12.0

12.5

13.0

13.5

1965 1985 2005 2025 2045 2065 2085

Year

Lo
ga

rit
hm

ic
 r

an
ge

Group

Obs

SSP 2−4.5

SSP 5−8.5

Season

Fall

Spring

Summer

Winter

Mississippi; AVG

Figure 8: Effective tail-correlation range (km) in logarithmic scale for the average (AVG) of
three climate model outputs, AWI, MIROC, and NorESM in the Danube region (top panels)
and the Mississippi region (bottom panels) for each season (Winter, Spring, Summer, Fall)
based on the observed temperature averages (square), optimistic climate change scenario
(SSP2-4.5, dashed), and pessimistic climate change scenario (SSP5-8.5, dotted).

to decrease in a warming climate during the major rain seasons, both in the Danube and

Mississippi regions, with more dramatic changes under the SSP5-8.5 scenario.

5 Discussion

5.1 Statistical considerations

Statistical modeling of spatial extremes is a complex task, and it becomes even more complex

in the setting of temporal nonstationarity due to the different possibilities to model nonsta-
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tionarity and the required higher model sophistication that follows from it. We have here

focused on using a covariate with strong physical motivation, and we have embedded it into

model parameters in a linear way (modulo the use of link functions). Therefore, the form of

nonstationarity captured by our model is restricted to the chosen temporal covariate, and it

cannot identify nonlinear effects that are more complex than the covariate itself. However,

our approach can be considered as robust for estimation and extrapolation beyond the range

of covariate values used for training.

The calculation of a basin average for the temperature covariate allowed us to use differ-

ent types of temperature data for the training and projection period, respectively. Locally,

climate model outputs are usually “smoother” than actual observations at weather stations,

but the averaging step led to a comparable degree of smoothing across the whole basin for

both data types. It would be interesting to refine our approach by using local temperature

covariates that are not averaged over the whole basin, such that intra-basin differences in tem-

peratures would be better taken into account and could lead to refined local interpretations

of results. However, to avoid biases with our approach, this would require having realistic

climate model outputs at relatively small spatial resolution of at most several kilometers,

which is not yet the case for most climate models of the current generation. Regional down-

scaling approaches, such as those of the recent CORDEX initiative (Giorgi and Gutowski Jr,

2015), already enable working at relatively smaller scales of around 10km and convection-

permitting models provide data at event finer spatial resolutions of 2-3km (Lucas-Picher

et al., 2021; Coppola et al., 2020).

Handling intermittence with absence of precipitation at some of the locations, and han-

dling low precipitation values that are observed imprecisely (e.g., with discretization effects

due to rounding of values), is notoriously difficult during statistical modeling and estimation.

We have here opted for a relatively simple procedure by removing precipitation observations
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during extreme episodes if they are below 10mm to have better marginal fits. Since this

approach flags observations as missing while there actually is information about them being

very small, our models might tend to slightly overestimate the spatial dependence range of

extremes. However, given that we treat all basins, seasons and time periods in the same way,

we can expect similar biases in all cases, such that the comparison of results, and especially

the interpretation of estimated dependence ranges across basins, seasons and time periods,

is not affected.

With r-Pareto processes, we have used models for extremal dependence that arise asymp-

totically in extreme-value theory and therefore provide a sound and robust modeling frame-

work in the extreme-value setting where data are not abundant. A key feature of such models

is that the spatial extent of extreme episodes remains constant (on average) when moving

towards higher quantiles of the risk functional r (with all model parameters being held fixed).

Many recent works on modeling environmental extremes rather suggest that spatial extents

often tend to decrease as the level of risk functionals increases (e.g., Wadsworth and Tawn,

2012; Opitz, 2016; Huser et al., 2017; Tawn et al., 2018; Bacro et al., 2019; Huser et al.,

2021; Huser and Wadsworth, 2022; Zhang et al., 2022). However, here we do not use our

models to extrapolate far into the tail, but we rather study the spatial characteristics of

extremal dependence at high but fixed and finite quantile levels. Therefore, this potential

model misspecification with respect to the property of asymptotic dependence stability is

not problematic for our approach and for the insights we gain from it. Future extensions of

the current work could consider the use of more flexible “subasymptotic” models reviewed

by Huser and Wadsworth (2022); however, the appealing use of general risk functionals to

target the modeling of specific types of extreme-event episodes is not yet possible with most

of these approaches.
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5.2 Hydro-meteorological considerations

While our findings show an increase in local precipitation intensities with increases in tem-

perature, they show a decrease in precipitation dependence during the main rain season. As

a consequence, further decreases of precipitation extents are projected in a warming climate.

Furthermore, our analysis for two river basins in different hydro-climates and different sea-

sons highlights that the relationship between temperature and precipitation extent is to some

degree season- and region-dependent. For example, relationships between temperature and

precipitation extent are more pronounced in the Mississippi than in the Danube river basin

and in spring and summer compared to winter and fall. These spatiotemporal variations in

the relationship between temperature and spatial precipitation extent may be the reason for

the disagreement of past studies on the direction of change in spatial precipitation extent

with increasing temperatures. While some observation- and simulation-based studies have

shown an increase of spatial precipitation extent over time for some seasons and regions

(Bevacqua et al., 2021; Tan et al., 2021; Rastogi et al., 2020; Lochbihler et al., 2017; Dittus

et al., 2015; Nikumbh et al., 2019), others have shown a decrease for other seasons and regions

(Benestad, 2018; Guinard et al., 2015; Wasko et al., 2016). In addition, while some of the

studies showing increases in precipitation extent focused on the winter season (e.g., Bevac-

qua et al., 2021), some of the studies showing decreases in extent focused on summer (e.g.,

Guinard et al., 2015). Similar seasonal variations have also been found in previous studies

assessing the “length scales” of extreme precipitation (Touma et al., 2018). Such seasonal

variations in the changes in precipitation extent suggest that changes in precipitation extent

may be related to changes in weather patterns and storm types. For example, convective

and localized summer storms may become more frequent in a future climate leading to a

decrease in spatial precipitation extents in summer, while storm types may increase in size

in other seasons (Chang et al., 2016; Moron et al., 2021). In addition to season and region,
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other factors may help to explain the divergent results on changes in precipitation extents by

different studies, including method choices, model simulations, and storm selection criteria

(Rastogi et al., 2020).

The projected changes in spatial precipitation extents have potential implications for the

spatial extent of flooding in a future climate. There is first evidence for past changes in

spatial flood extents over Europe (Berghuijs et al., 2019; Kemter et al., 2020), yet, it is less

clear which hydro-climatic variables caused these changes. Precipitation is one important

flood driver, particularly for high-magnitude events (Berghuijs et al., 2019; Brunner et al.,

2021). However, land-surface processes such as soil moisture and snowmelt modulate spatial

flood dependencies in addition to precipitation (Brunner et al., 2020b; Rupp et al., 2021).

That is, the detected changes in precipitation extents do likely not directly translate to

changes in flood extents. Still, considering these dependencies is crucial to avoid under- or

over-estimating the risk of widespread flooding (Thieken et al., 2015; Brunner et al., 2020c).

6 Conclusions

In this paper, we used r-Pareto processes to model extreme precipitation in two major river

basins and to study the time evolution of their spatial extent. To do so, we studied the

relationship between temperature and the spatial extent of extreme precipitation by linking

a suitable temperature covariate to the range parameter in the underlying semivariogram

function. Our results show a negative correlation between the spatial precipitation extent

and the temperature covariate for the two river basins, Danube and Mississippi, during the

major rain seasons. As for the marginal fits, the fitted return level in the Danube river

basin is slightly increasing, especially during summer. By contrast, return levels in the

Mississippi river basin remain relatively stable. That is, while precipitation intensities are

increasing locally in the Danube region or remain stable in the Mississippi region, the spatial
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extent of precipitation is decreasing with increasing temperatures during major rain seasons.

As a consequence, climate simulations based on future temperature scenarios project future

decreases in spatial precipitation extents as a result of increasing temperatures. These results

are to a certain degree region- and season-specific and generalizations to other regions are

challenging. Simultaneous increases in local precipitation intensities and decreases in spatial

extent suggest more localized impacts. In future research, a completely different approach

based on Poisson point processes or spatial logistic regression models could be used to directly

assess the time-varying extent extreme precipitation events above a certain level.
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Lucas-Picher, P., Argüeso, D., Brisson, E., Tramblay, Y., Berg, P., Lemonsu, A., Kotlarski,
S. and Caillaud, C. (2021) Convection-permitting modeling with regional climate models:
Latest developments and next steps. Wiley Interdisciplinary Reviews (WIREs): Climate
Change 12, e731.

Mandel, I. and Lipovetsky, S. (2021) Climate Change Report IPCC 2021—A Chimera of
Science and Politics. Available at SSRN 3913788 .

33



Moron, V., Barbero, R., Fowler, H. J. and Mishra, V. (2021) Storm types in India: linking
rainfall duration, spatial extent and intensity. Philosophical Transactions of the Royal
Society A 379, 20200137.

Muller, C. J., O’Gorman, P. A. and Back, L. E. (2011) Intensification of precipitation ex-
tremes with warming in a cloud-resolving model. Journal of Climate 24, 2784–2800.

Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B. H., Sill-
mann, J., Schaller, N., Fischer, E., Schulz, M. et al. (2019) Frequency of extreme precipi-
tation increases extensively with event rareness under global warming. Scientific Reports
9, 1–10.

Na, Y., Fu, Q. and Kodama, C. (2020) Precipitation probability and its future changes from
a global cloud-resolving model and CMIP6 simulations. Journal of Geophysical Research:
Atmospheres 125, e2019JD031926.

Nikumbh, A. C., Chakraborty, A. and Bhat, G. (2019) Recent spatial aggregation tendency
of rainfall extremes over India. Scientific Reports 9, 1–7.

Olafsdottir, H. K., Rootzén, H. and Bolin, D. (2021) Extreme Rainfall Events in the North-
eastern United States Become More Frequent with Rising Temperatures, but Their Inten-
sity Distribution Remains Stable. Journal of Climate 34, 8863–8877.

Opitz, T. (2016) Modeling asymptotically independent spatial extremes based on Laplace
random fields. Spatial Statistics 16, 1–18.

Opitz, T., Bacro, J.-N. and Ribereau, P. (2015) The spectrogram: A threshold-based infer-
ential tool for extremes of stochastic processes. Electronic Journal of Statistics 9, 842–868.

Opitz, T., Huser, R., Bakka, H. and Rue, H. (2018) INLA goes extreme: Bayesian tail
regression for the estimation of high spatio-temporal quantiles. Extremes 21, 441–462.

Papalexiou, S. M. and Montanari, A. (2019) Global and regional increase of precipitation
extremes under global warming. Water Resources Research 55, 4901–4914.

Pendergrass, A., Coleman, D., Deser, C., Lehner, F., Rosenbloom, N. and Simpson, I. (2019)
Nonlinear response of extreme precipitation to warming in CESM1. Geophysical Research
Letters 46, 10551–10560.

Pendergrass, A. G. and Knutti, R. (2018) The uneven nature of daily precipitation and its
change. Geophysical Research Letters 45, 11–980.

Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., Holland, G. J. and Clark,
M. P. (2017) Increased rainfall volume from future convective storms in the US. Nature
Climate Change 7, 880–884.

Rastogi, D., Touma, D., Evans, K. J. and Ashfaq, M. (2020) Shift toward intense and
widespread precipitation events over the United States by mid-21st century. Geophysical
Research Letters 47, e2020GL089899.

34



Richards, J., Tawn, J. A. and Brown, S. (2022) Modelling extremes of spatial aggregates of
precipitation using conditional methods. Annals of Applied Statistics 16, 2693–2713.

Rupp, D. E., Chegwidden, O. S., Nijssen, B. and Clark, M. P. (2021) Changing river network
synchrony modulates projected increases in high flows. Water Resources Research 57,
e2020WR028713.

Stephens, G. L., L’Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C., Bodas-Salcedo,
A., Suzuki, K., Gabriel, P. and Haynes, J. (2010) Dreary state of precipitation in global
models. Journal of Geophysical Research: Atmospheres 115.

Swain, D. L., Langenbrunner, B., Neelin, J. D. and Hall, A. (2018) Increasing precipitation
volatility in twenty-first-century california. Nature Climate Change 8, 427–433.

Tan, X., Wu, X. and Liu, B. (2021) Global changes in the spatial extents of precipitation
extremes. Environmental Research Letters 16, 054017.

Tawn, J., Shooter, R., Towe, R. and Lamb, R. (2018) Modelling spatial extreme events with
environmental applications. Spatial statistics 28, 39–58.

Thibaud, E. and Opitz, T. (2015) Efficient inference and simulation for elliptical Pareto
processes. Biometrika 102, 855–870.

Thieken, A. H., Apel, H. and Merz, B. (2015) Assessing the probability of large-scale flood
loss events: a case study for the river Rhine, Germany. Journal of Flood Risk Management
8, 247–262.

Touma, D., Michalak, A. M., Swain, D. L. and Diffenbaugh, N. S. (2018) Characterizing the
spatial scales of extreme daily precipitation in the United States. Journal of Climate 31,
8023–8037.

Wadsworth, J. L. and Tawn, J. A. (2012) Dependence modelling for spatial extremes.
Biometrika 99, 253–272.

Wasko, C., Sharma, A. and Westra, S. (2016) Reduced spatial extent of extreme storms at
higher temperatures. Geophysical Research Letters 43, 4026–4032.

Wood, R. and Ludwig, R. (2020) Analyzing internal variability and forced response of sub-
daily and daily extreme precipitation over Europe. Geophysical Research Letters 47,
e2020GL089300.

Yang, L., Franzke, C. L. E. and Fu, Z. (2020) Evaluation of the ability of regional climate
models and a statistical model to represent the spatial characteristics of extreme precipi-
tation. International Journal of Climatology 40, 6612–6628.

Zeder, J. and Fischer, E. M. (2020) Observed extreme precipitation trends and scaling in
Central Europe. Weather and Climate Extremes 29, 100266.

Zhang, Z., Huser, R., Opitz, T. and Wadsworth, J. L. (2022) Modeling spatial extremes
using normal mean-variance mixtures. Extremes 25, 175–197.

35


	Introduction
	Dataset
	General description
	Exploratory analysis

	Methodology
	Designing a suitable physics-based temporal covariate
	Marginal modeling
	Dependence modeling with time-varying r-Pareto processes

	Estimation results and future projections
	Marginal estimation
	Spatial extreme dependence estimation
	Future spatial extent projections

	Discussion
	Statistical considerations
	Hydro-meteorological considerations

	Conclusions

