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Abstract

Since the introduction of extremal graphical models, various methods have been
proposed to learn the underlying dependence structure using graphical lasso-based al-
gorithms. Unlike conditional independence in Gaussian graphical models of dimension
d, extremal conditional independence is defined by conditioning on single site being
large, which naturally leads to d precision matrices of dimension d − 1 that encode
extremal conditional independence. Recent literature has shown the existence of a
single positive semi-definite precision matrix that encodes the extremal conditional in-
dependence. However, current inference methods, e.g, EGlearn, relies on learning d
sub-graphs and often fail to guarantee connectivity, frequently yielding multiple dis-
connected components as the extremal graph must be connected and full independence
is not permitted.

Additionally, these graphical lasso-based approaches use empirical estimates of ei-
ther d variogram matrices or a aggregated covariance matrix from dmatrices, which can
be unintuitive. In this paper, we introduce a novel inference method for the Hüsler-
Reiss graphical model based on three different estimators of the precision matrix’s
pesudo inverse, termed as extremal covariance matrix, and directly exploit the struc-
ture of the precision matrix, which mimic the Gaussian case. Comparing to existing
methods, we demonstrate that our method is as fast but more accurate for learning
the graphical dependence structure, while ensuring connectivity. Furthermore, when
full independence is assumed between disconnected components, our approach can also
accommodate it, yielding the exactly disconnected components, which provides a new
tool for extremal clustering. We also provide a data driven method using hierarchical
clustering method to learn the clustered structure. We validate the performance of our
method through simulation studies and two real data applications.

Keywords: Graphical extremes; Hüsler-Reiss process; Multivariate Pareto distribution; Graph-

ical lasso; Cluster detection;
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1 Introduction

Graphical models are powerful tools for understanding structured relationships in data, par-

ticularly in the context of multivariate Gaussian distributions where conditional indepen-

dence can be directly inferred from the precision matrix (Rue and Held, 2005). However,

for multivariate extremes, graphical models have only recently been developed for a class

of models known as multivariate Pareto distributions associated with the maximum risk

functional (Engelke and Hitz, 2020; Hentschel et al., 2024), with a focus on the Hüsler-

Reiss graphical model. Similar to the Gaussian graphical model, it has been shown that the

Hüsler-Reiss graphical model has a single precision matrix, termed as extremal precision ma-

trix, that encodes the extremal conditional independence structure, and the corresponding

graph should be connected (Hentschel et al., 2024). However, existing inference methods for

learning the graphical structure of the Hüsler-Reiss graphical model often fail to guarantee

the connectivity and tend to produce multiple disconnected components (Hentschel et al.,

2024; Wan and Zhou, 2025; Engelke et al., 2025). In the Gaussian setting, disconnected

graphical components are interpreted as full independence, but this interpretation does not

hold for the Hüsler-Reiss graphical model, as a single parametrized Hüsler-Reiss model can

only capture asymptotic dependence, but not asymptotic independence. Therefore, there

is a critical gap between the theoretical understanding and the methods for learning the

graphical structure, particularly in dealing with disconnected graphical components, which

requires urgent attention.

Current inference methods for graphical extremes with dimension d, including the EGlearn

(Engelke et al., 2025; Hentschel et al., 2024) and the extremal graphical lasso (Wan and Zhou,

2025), are based either on empirical variogram matrix, Γ̂(k), or empirical covariance matrix

of dimension d − 1 conditioning on each dimension k, k = 1, . . . , d. The EGlearn method

involves using the graphical lasso method with each Γ̂(k) repeatedly and then aggregating
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the learned d sub-graphs with d− 1 nodes into a single graph of d nodes, while the extremal

graphical lasso method in Wan and Zhou (2025) combines d empirical covariance matrices

into a single empirical covariance matrix and then applies the a graphical lasso method to

learn a single graph by penalising the entries of the precision matrix towards a positive

constant. Besides the lack of connectivity guarantee, both methods are not intuitive, as nei-

ther the empirical variogram matrix Γ̂(k) or the empirical covariance matrix Σ̂(k) are directly

linked to the graphical structure unlike the precision (covariance) matrix in the Gaussian

graphical model. The EGlearn method can be potentially computationally expensive as it

requires d times of graphical lasso optimisation to be applied. In contrast, the extremal

graphical lasso method only requires one time of graphical lasso optimisation. However,

according to the simulation study in Wan and Zhou (2025), the extremal graphical lasso is

not as efficient as the EGlearn method and performs poorly in terms of F score, which is a

measure for predictive performance of identifying edges in the graphical structure, especially

when d is relatively large (d ≥ 100).

In this paper, we propose a new efficient inference method for learning the graphical

structure of the Hüsler-Reiss graphical model while guaranteeing the connectivity, which is

directly using 3 different estimators of the extremal precision matrix’s pesudo-inverse. We

termed this pesudo-inverse of the extremal precision matrix as extremal covariance matrix.

We also showed that these extremal covariance matrix estimators, which are based on differ-

ent risk functionals,are consistent and unbiased, and we further justify our the usage of these

estimators by showing that these risk functionals will lead to a Hüsler-Reiss with the same ex-

tremal covariance matrix as long as they are in the max-domain attraction of a Hüsler-Reiss

max-stable distribution. With the estimated extremal covariance matrix, we then optimise

a graphical lasso objective function, assuming the model is extremal multivariate total pos-

itive of order 2 (EMTP2) (Röttger et al., 2023), to infer the extremal precision matrix. The
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assumption of EMTP2 is not restricted at all as one would expect positive associations for

extreme random vectors and there are indeed many classic max-stable models preserving

the EMTP2 property. For Hüsler-Reiss graphical models, the EMTP2 condition essentially

means the extremal precision matrix is a M-matrix, i.e., off-diagonal elements of the extremal

precision matrix is non-positive. In the Gaussian setting, assuming the precision matrix is

a M-matrix and learning the precision (covariance) matrix has been widely explored in the

literature (Lauritzen et al., 2019; Ying et al., 2021; Kumar et al., 2019). However, assuming

the extremal precision matrix is a M-matrix will further make the extremal precision matrix

a laplacian matrix, i.e., rows of the matrix are summed to zero, which is a subset of the

M-matrix family. If the extremal precision matrix is a laplacian matrix, then, we can enforce

the connectivity of the learnt graph by imposing spectral constraints on the eigenvalues of

the extremal precision matrix. In this paper, we adopt the algorithm from (Kumar et al.,

2019) to learn the structured graph via spectral constraints, which only require one time

optimisation and is computationally efficient. Other graphical methods with laplacian con-

straints can also be used potentially, such as Ying et al. (2020, 2021), where a generalized

lasso penalty is used rather than the L1 norm penalty on each off-diagonal element of the

estimated precision matrix, since simply optimizing the graphical lasso with laplacian con-

straints will not lead to a sparse graph when the lasso penalty is too large, instead, it will

lead to a complete graph (Ying et al., 2020). Röttger et al. (2023) used a similar approach

as in Ying et al. (2021) but without the sparsity regularization to learn a connected graph

under EMTP2 assumption. Therefore, their method cannot guarantee sparsity of the learnt

graph and it is not designed for structure learning. Moreover, Engelke et al. (2025) also

showed that the method in Röttger et al. (2023) does not perform well, especially in high

dimensions.

While independence assumption is made for disconnected components, i.e., the precision
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matrix is a block diagonal laplacian matrix, our approach can also accommodate it by im-

posing spectral constraints and learn the exact disconnected components given the correct

number of disconnected components, which provides a new tool for clustering independent

components. This is not done by direct usage of the estimated extremal covariance matrix

since the estimator for the extremal covariance matrix is only designed for a single dependent

component. Moreover, since the data we have is usually not already following an extreme

distribution, but only assumed in the max-domain attraction of a Hüsler-Reiss max-stable

distribution. Thus, we need first to make sure all the components converges to the multi-

variate Hüsler-Reiss distribution based on the minimum risk functional. Then, the sample

covariance matrix of the threshold exceedances will preserves the independence information

as block diagonal matrix. With this sample covariance matrix, we then learn the discon-

nected clusters by minimising the same objective function as in (Kumar et al., 2019) with

spectral constraints. Additionally, as one can regard the extremal correlation as a measure

of similarities, we also propose a hierarchical clustering method (Murtagh and Contreras,

2017) based on the estimated extremal correlation matrix to identify multiple independent

Hüsler-Reiss Pareto components, which provides another tool for clustering independent

components.

This paper is organized as follows: In Section 2, we start by establishing results for r-

Pareto processes equipped with marginal exponential tails, where we show that with a new

family of risk functional will leads to a r-Pareto processes with the same exponent function.

We then introduced the definition of the Hüsler-Reiss graphical models and the extremal

covariance matrix, as well as two estimators of the extremal covariance matrix in Section 3.

In Section 4, we introduced the spectral graphical lasso method based on the extremal

covariance matrix. When we have multiple disconnected graphical components, we assume

they corresponds to independent multivariate Pareto distributions. We also discussed the
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connection between the independence definitions from Engelke et al. (2024) and Strokorb

(2020), and showed that their definition is not well defined. We establish two different

methods to learn the disconnected components, one is based on the spectral constraints and

the other is based on hierarchical clustering method using the extremal correlation matrix.

In Section 5 and Section 6, we validate our method through simulation studies and two real

data applications. We conclude with a discussion in Section 7.

2 Pareto Processes with Exponential Marginal Tail

Multivariate Pareto distributions are a class of distributions that are used to model peaks

over thresholds exceedances defined via a homogeneous risk functional r(·), i.e., r(cx) =

cr(x), c > 0 (Dombry and Ribatet, 2015), when marginally equipped with a Pareto tail.

However, when we simply take a logarithmic transformation of the Pareto distributions and

assume the marginal distribution has standard exponential tails, it becomes unclear how

to define the associated risk functional r(·). Direct mapping the exponential tail back to

the Pareto tail by taking exponential transformation make the interpretation and inference

awkward as r(exp(·)) is no more a homogeneous function, whereas homogeneity is often a

desirable property. In this section, we extend the concept of Pareto processes to the case

where marginal tail distribution is assumed to be standard exponential. We borrow the

notion in Dombry and Ribatet (2015) and introduce modified theory of Dombry and Ribatet

(2015, Theorem 1) by simply taking logarithmic marginal transformation of the random

variables, where equivalency between the convergences of the measure of pointwise maxima

and the measure of the threshold exceedances associated with the supremum function for

random variables with standard exponential tail is established. Let T be a compact metric

space and C = C{T, [−∞,∞)}, the Banach space of continuous functions from T to [−∞,∞),

and C0 = C\{−∞}.
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Proposition 1 (Theorem 1 in Dombry and Ribatet (2015)). Let X1, X2, . . . be independent

copies of a random process X with samples path in C0 and standard exponential tail, i.e.,

∃ u ∈ R,Pr(X(t) − u > x|X(t) > u) = e−x for x > 0, t ∈ T . Let a(n) = sup{x ≥ 0 :

Pr(supt X(t) ≤ x) ≤ 1− 1/n}, then, the following statements are equivalent:

1. Mn(t) = max{X1(t), . . . , Xn(t)}−a(n), t ∈ T converges in distribution to a max-stable

random process with exponent measure Λ(·) and Gumbel margins as n → ∞, where

Λ(u + A) = exp(−u)Λ(A) for all measureable set A ⊂ C0 and Λ is a continuous

measure on C0.

2. nPr (X − a(n) ∈ ·) converges weakly to Λ(·) as n → ∞.

3. Pr (X − n ∈ ·| supt X(t) > n) → Λ(· ∩ Csup)/Λ(Csup) as n → ∞, where Csup = {x ∈ C :

supt x(t) > 0}.

In contrast to the homogeneity assumption typically imposed on r(·) for r-Pareto pro-

cesses with marginal Pareto tails, we instead require that the risk functional r(·) satisfies the

following linearity condition:

r(x+ a) = r(x) + a, a ∈ R, x ∈ C0. (1)

This class of risk functional includes, r(x) = supt x(t), r(x) = inft x(t), r(x) = x(t), t ∈ T , and

r(x) =
∫
T
w(t)x(t)dt/|T |, where w(t) ≥ 0 and

∫
T
w(t)dt = |T |. The following two theorems

establish the equivalency between the convergence of the measure of pointwise maxima and

the measure of the threshold exceedances associated with the supremum function for random

variables with standard exponential tail, which is a direct extension of Proposition 1 to the

case where r(·) satisfies the linearity condition in (1).

Theorem 1. Assume r(·) satisfies the linearity condition in (1), and let X be a random
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process such that the following weak convergence holds,

Pr(X − u ∈ ·|r(X) > u) → Pr(Y ∈ ·), u → ∞.

Then, the random process Y is either a Pareto process or Pr(r(Y ) = 0) = 1. Moreover, if Y

is a Pareto process, then the following statements hold and are equivalent:

1. Pr(r(Y ) > 0) > 0 and Pr(Y − u ∈ ·|r(Y ) > u) = Pr(Y ∈ ·) for u ≥ 0.

2. r(Y ) has a exponential distribution, i.e., Pr(r(Y ) > u) = e−u for u ≥ 0, and r(Y ) and

Y − r(Y ) are independent.

3. Pr(r(Y ) > 0) = 1, and for u ≥ 0 and measureable set A ⊂ Cr, we have

Pr(Y ∈ A+ u) = exp(−u)Pr(Y ∈ A).

The proof of Theorem 1 can be found in Appendix A.1.

Theorem 2. Suppose the random process X satisfies any statement in Proposition 1 and

r(·) satisfies the linearity condition in (1), then we have the following weak convergence:

Pr(X − u ∈ ·|r(X) > u) → Pr(Y ∈ ·), n → ∞,

where Y is a Pareto process with risk functional r(·) as defined in (2).

The proof of above theorem is similar to that of Dombry and Ribatet (2015, Theorem 3),

which use the convergence in the second statement of Proposition 1 as a condition to prove

the convergence above, then use the results in Theorem 1 to show the limit distribution is a

Pareto process defined in (2).

Theorem 2 and 1 combined suggest that, if X is in the max-domain of attraction of a

max-stable process with Gumbel margins, then its threshold exceedances over the exceedance

region defined via the risk functional, r(·), which satisfy the linearity condition in (1), will
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converge weakly to a Pareto process Y defined in (2). Different risk functional r(·) yields

different Pareto processes but with the same exponent function Λ(·), and with such risk

functional satisfying (1), the Pareto process Y has the distribution

Pr(Y ∈ ·) = Λ(· ∩ Cr)/Λ(Cr), Cr = {x ∈ C0 : r(x) > 0}, (2)

where Λ(u + A) = exp(−u)Λ(A), u ∈ R. For extremal graphical learning, this allows us to

choose certain risk functional such that the inference can be significantly simplified and can

be made efficiently. In the next section, we introduce the Hüsler-Reiss graphical models,

which is a Hüsler-Reiss Pareto process restricted onto finite dimensions, and the associated

extremal covariance matrix.

3 Hus̈ler-Reiss Graphical Model and the Extremal Co-

variance Matrix

To introduce the Hüsler-Reiss graphical models, we first introduce its corresponding max-

stable distributions, which are the essential building block for multivariate Pareto distribu-

tions. Max-stable processes are a class of models used for modeling extremes, particularly for

block maxima. They serve as the limiting process for componentwise maxima after suitable

affine transformation (Resnick, 2008). It has been established that max-stable processes, de-

noxted as Z(s), with unit Gumbel margins, i.e., Pr(Z < z) = exp{− exp(−z)} for z ∈ R, can

be represented using a spectral representation (de Haan, 1984). The spectral representation

is given by,

Z(s) =
∞
sup
i=1

Ri +Wi(s)− a(s), s ∈ S, Ri ∼ PPP(exp(−r)), for r ∈ R, (3)

where W (s) is a spatial process, Ri are the points of a Poisson point process (PPP) of

intensity exp(−r), and a(s) is a constant such that E[exp(W (s) − a(s))] = 1. The finite
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dimensional distribution of Z(s) at locations s1, . . . , sd is expressed as

Pr(Z ≤ z) = exp{−V (z)}, V (z) =

∫
R+

1− Pr(W − a+ r1 ≤ z)d exp(−r), (4)

where V (z) = Λ({x ∈ E : maxi xi − zi > 0}), E = [−∞,∞)d\{−∞}, is called the exponent

function and Λ is the exponent measure over the support domain E . Suppose now we takeW

as a random vector and assume W1 = 0 almost surely, then the exponent function becomes

V (z) =

∫ z1

−∞
exp(−r){1− Pr(W−1 + r1− a−1 ≤ z−1)}dr + exp(−z1). (5)

and, the associated intensity function is given by

κ(z) = − ∂dV (z)
∂z1...∂zd

= exp(−z1)fW−1(z−1 + a−1 − z11), (6)

where fW denotes the density function of the random vector W . The results are summarised

in the following proposition.

Proposition 2. For max-stable processes defined in (3), where the constituent process W is

taken as a process satisfying condition that E[exp(W (s)− a(s))] = 1 and W (s0) = 0 almost

surely, the exponent function in at locations s1, . . . , sd is given in (5) and corresponding

intensity function is given in (6).

Suppose we have a random vector, X, with unit exponential margins, which belongs to

the max-domain attraction of the aforementioned max-stable distribution. In this case, we

have maxni=1Xi − log(n)
d→ Z, which can be also expressed as the following convergence

(Resnick, 2008, See also Theorem 1),

nPr[X − log(n) ∈ ·] → Λ(·), n → ∞, (7)

where Λ is the exponent measure. Then, we have the weakly convergences, (X2 −X1, X3 −

X1, . . . , Xd − X1)|X1 > log(n) → W−1 − a−1 as n → ∞ (Engelke et al., 2015, for the
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Hüsler-Reiss case). This result enables us to translate the inference for extremes to the

inference for W , and for the Hüsler-Reiss max-stable process, the spatial process W (s) in

(3) is taken to be a Gaussian process. Kabluchko et al. (2009) suggested that the Hüsler-

Reiss max-stable process only depends on the variogram of the Gaussian process, meaning

that the constituent Gaussian processes W (s) in the spectral representation are only defined

up to Gaussian increments, i.e., W (s) has zero mean and E[(W (si)−W (sj))
2] = γij, and the

normalizing constant a(s) is chosen accordingly. The exponent function of the Hüsler-Reiss

distribution is determined by the variogram matrix Γ = (γij)
d
i,j=1. However, the variogram

matrix alone cannot fully determine the distribution of the constituent Gaussian vector W .

To make the Gaussian vector W well-defined, one option is to fix a single component of

the Gaussian vector to be zero almost surely, as we did in Proposition 2. This allows us

to translate the inference for the extremes of X that are in the domain of attraction of

Z to the inference for W , a Gaussian random vector. It might be reasonable to assume

that the Hüsler-Reiss max-stable random vector Z has a conditional independence structure

similar to that of the Gaussian random vector W . However, this is not true. In fact,

conditional independence for Z with a continuous density implies full independence for Z

(Papastathopoulos and Strokorb, 2016). For extremes, Engelke and Hitz (2020) introduced

the concept of extremal conditional independence and Markov property for the multivariate

Pareto random vector, Y , with exceedances region defined as Lu
max, where the risk functional

r(·) is the maximum, i.e., Lu
max = {Y ∈ E : r(Y ) = maxi Yi > u}.

The distribution function for multivariate Pareto distributions can be found as

Pr(Y ≤ y) = lim
n→∞

Pr(Xi − log(n) ≤ y|r(X) > log(n)) = Λ({x∈E:r(x)>0, x≤y})
Λ({x∈E:r(x)>0}) . (8)

The multivariate density function will be given by

κ(y)
Λ({x∈E:r(x)>0}) , (9)
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and we denote the multivariate Pareto distribution as Y ∼ PL0
r
, where Λ(L0

r) is positive and

finite. For Hüsler-Reiss model, the expression of κ(·) in (6) is not unique as mentioned earlier,

which depends on the definition of the constituent Gaussian random vector W providing

the same variogram matrix, Γ. Hentschel et al. (2024) used the expression in (6) and derived

the intensity function as

Proposition 3 (Proposition 3.4 in Hentschel et al. (2024)). The intensity function κ(·) for

the Hüsler-Reiss process can be expressed in terms of the variogram matrix Γ as

κ(y) = (2π)−(d−1)/2(d−1|Θ|+)1/2 exp
(
−1

2
y⊤Θy − ( 1

2d
ΘΓ1− 1

d
1)⊤y − 1

8d2
1⊤(ΓΘΓ + 2Γ)1

)
(10)

where Θ is the Moore-Penrose pseudo-inverse of the matrix Σe = −1/2(I− 1
d
11⊤)Γ(I− 1

d
11⊤)

and |·|+ denotes the generalized determinant, which is the product of the non-zero eigenvalues

of the matrix.

The matrix Σe satisfying Σe1 = 0 is a unique positive semi-definite matrix that defines

the intensity function of Hüsler-Reiss process since the extremal precision matrix uniquely

defines the intensity function. Therefore, we have the following definition for the extremal

covariance matrix.

Definition 1 (Extremal covariance matrix). The matrix Σe is called the extremal covariance

matrix of the Hüsler-Reiss process if Σe is the Moore-Penrose pesudo inverse of the extremal

precision matrix. Both of the extremal covariance matrix and the extremal precision matrix

are positive semi-definite such that Σe1 = 0,Θ1 = 0, and define the same intensity function

of Hüsler-Reiss process.

Let G = (V,E) be a graph, where the set V = {1, . . . , d} denotes the nodes and E ⊂ V ×V

denotes the undirected edges between pairs of nodes. For the multivariate Pareto random

vector Y ∼ PLu
max

, u ∈ R with standard exponential tail, Pr[Y − u > y|Y > u] = e−y, y ≥ 0,
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extremal conditional independence between ith and jth components is defined (Engelke and

Hitz, 2020) as

Y (k) := Y |Yk > u and Y
(k)
i ⊥⊥ Y

(k)
j |Y (k)

\{i,j}, ∀ k ∈ V, (11)

and we denote the extremal conditional independence as Yi ⊥⊥e Yj|Y\{i,j}. Notice that the

above definition is for standard exponential tailed variables with support L0
max, the original

extremal conditional independence is defined when Y has a unit Pareto tailed distribution

with support L1
max (Engelke and Hitz, 2020) and corresponding multivariate density function

is homogeneous of order −(d+1). However, since the risk functional r(x) = maxi xi preserves

monotonic marginal transformation, such as the logarithmic transformation, the definitions

defined over the exponential tail and the Pareto tail are equivalent. The extremal precision

matrix Θ in (10) encodes the information of the graphical structure similar as the precision

matrix of Gaussian graphical models, where off-diagonal zero entries imply extremal condi-

tional independence. However, Θ is not of full rank, and it has a rank of d−1 with null space

1, i.e., Θ1 = 0. Wan and Zhou (2025) proposed a complicated estimator for the extremal

covariance matrix Σe and then used graphical lasso method, termed as extremal graphical

lasso, to learn the graphical structure based on the estimated Σe. The estimator for Σe is

formulated as

Σ̂(1) := 1
d

d∑
k=1

S(k) −

(
1
d3

d∑
k=1

1⊤S(k)1

)
11⊤, (12)

where S(k) is the empirical sample covariance of Y (k) − Y
(k)
k 1. It is worth noting that

Σ̂(1)1 = 0 by design, indicating that the estimator preserves the null space of Σe. Another

graphical inference method, called EGlearn, proposed by Engelke et al. (2025), learns the

graphical structure of each component using the Gaussian graphical lasso method based

on the sample covariances S(k). The learned sub-graphs are then aggregated into a single

graph using majority voting. Additionally, Engelke et al. (2025) proposed an estimator for
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Γ, termed as empirical variogram matrix and showed that the estimator Γ̂ is a consistent

estimator for Γ under certain assumptions. Therefore, a second estimator, denoted as Σ̂(2)

for Σe will be simply replacing Γ with its estimator Γ̂, given by

Γ̂ = 1
d

d∑
k=1

Γ̂(k), Σ̂(2) = −1/2(I − 1
d
11⊤)Γ̂(I − 1

d
11⊤), (13)

where Γ̂(k) is the empirical variogram matrix of Y (k) − Y
(k)
k 1, and the estimator Σ̂(2) is also

used in Röttger et al. (2023). Wan and Zhou (2025) conducted a simulation study showing

the performance of their extremal graphical lasso method is comparable with the EGlearn

method only in certain cases, but worse in high dimensions (d = 100) especially when the

truth graph is sparse. However, both of the inference methods do not guarantee connectivity.

Wadsworth and Tawn (2014) provided another expression of the intensity function as

κ(y) =(2π)−(d−1)/2|Σ|−1/2|1⊤Σ−11|−1/2× (14)

exp
(
−1

2
(y + a)⊤

(
Σ−1 − Σ−111⊤Σ−1

1⊤Σ−11

)
(y + a)− 1⊤Σ−1(y+a)

1⊤Σ−11
+ 1

2
(1⊤Σ−11)−1

)
,

where Σ is a well-defined covariance matrix, i.e., Σ is positive definite, of the Gaussian

vector W such that Γ = diag(Σ)1⊤ + 1diag(Σ)⊤ − 2Σ. As (10) and (14) are equivalent

(Kabluchko et al., 2009), we have Θ = Σ−1 − Σ−111⊤Σ−1/(1⊤Σ−11), and they encode the

same graphical structure. In the next section of the paper, we will explore the relationship

between the matrix Θ and Σ, and establish a new expression of the intensity function directly

based on the matrix Θ.

Hentschel et al. (2024) mentioned that when restricting the support of Y to the space

{y ∈ E : 1⊤y ≥ 0}, the intensity function κ(y) is proportional to the density function of a

random variable W ′ +R′1, where W ′ is a Gaussian random vector with precision matrix Θ

such that
∑d

k=1W
′
k = 0 and R′ ∼ Exp(1) with W ′ ⊥⊥ R. Similar results can be also found in

Wan (2024), where they proposed to conduct principal component analysis for multivariate

Pareto random variables restricted on the hyperplane.
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Let the extremal precision matrix Θ has eigenvalues λ1 = 0, λ2 > 0, . . . , λd > 0 and their

corresponding eigenvectors e1 = 1/
√
d, e2, . . . , ed so that

Θ =
d∑

i=1

λieie
⊤
i = ABA⊤

where A = (e1, . . . , ed), B = diag(λ1, . . . , λd), and A⊤A = I. The IGMRF of order 1

with linear constraint of order 1, i.e.,
∑d

i=1 Wi = 0, can be sampled as W = ÃE, where

Ã = (e2, . . . , ed) and E ∼ N (0, B̃ = diag(λ−1
2 , . . . , λ−1

d )). Obviously, we have W⊤1 = 0.

The spectral representation for the new model is given by

Z =
∞

max
i=1

Ri1+Wi − â, Ri ∼ PPP(exp(−r)), for r ∈ R, (15)

where Wi are independent copies of W and â = diag(ÃB̃−1Ã)/2. Here, we use the â to

differentiate from the notation used in (3). The new max-stable model in (15) has intensity

function as

κ(x) =

∫
R
exp(−r)1{1⊤(x−r1+â)=0}ϕ(x− r1+ â)dr (16)

= (2π)−(d−1)/2

(
d∏

i=2

λ
1/2
i

)
exp

{
−1

2
(x+ â)⊤Θ(x+ â)− (x+â)T 1

d

}
,x ∈ E

As for the corresponding multivariate Pareto distribution Y with risk functional r(x) =

1/d
∑

i xi, we have the independence between 1/d
∑d

i Yi and Y − 1/d
∑d

i Yi, which can be

easily seen from Theorem 1. The term 1/d
∑d

i Yi can be regarded as the extremeness level,

and Y − 1/d
∑d

i Yi represents the extremal dependence. Indeed, one can find Y ∼ PLu
avg

,

Lu
avg == {x ∈ E : 1/d

∑
i xi > u}, can be expressed as,

Y = R1+W − â, R− â⊤1/d− u ∼ Exp(1),W ∼ GMRF(Θ), W⊤1 = 0, (17)

From above representation, to simulate from the multivariate Pareto distribution exactly

over the region Lu
avg, we can simulate the extremeness level and the extremal dependence

independently as follows: First, we simulate a GMRF with precision matrix Q with the
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linear constraint W⊤1 = 0. Second, we simulate a random variable R from the standard

exponential distribution. The resulting random vector, Y = R1 + W − â, Y ∈ Lu
avg,

will follow the multivariate Pareto distribution with the intensity function as above. More-

over, if we set Σ−1 = Θ + τ/d11⊤,∀ τ > 0 in (14), then, we have |Σ−1|1/2(1⊤Σ−11)−1/2

= (τ
∑d

i=2 λi)
1/2(τd)−1/2 = d−1/2(

∏d
i=2 λ

1/2
i ) and â = a− 1

2Dτ
1. Then, the equation in (14)

is equivalent to the equation in (16). Therefore, the new model parametrized by the improper

precision matrix Θ with exceedance region L0
avg and model in (14) with Σ−1 = Θ+ τ/d11⊤

over the same region L0
avg are the same model with intensity function

κ(x) = (2π)−(d−1)/2|Θ|−1/2
+ d−1/2 exp

{
−1

2
(x+ a)⊤Θ(x+ a)− 1⊤(x+a)

d
+ 1

2τd

}
,

which implies that our multivariate Pareto distribution Y is equivalent to the multivariate

Pareto distribution defined in Proposition 3 over the region Lu
avg. Alternatively, as Lu

avg ⊂

Lu
max, one can simulate samples from the multivariate Pareto distribution over Lu

avg using

rejection sampling by firstly simulating from the multivariate Pareto distribution over Lu
max

and then take the samples that are in Lu
avg.

Theorem 2 suggests that if the random vector X is in the max-domain of the Hüsler-

Reiss max-stable distribution, then threshold exceedances, X − u|r(X) > u, converges to

Y in distribution as u → ∞ with the same intensity function κ(·) but different support

domain, L0
r, where r(·) satisfies the linearity condition in (1). Therefore, based on the

representation in (17), the graphical structure of the multivariate Pareto distribution, Y ∼

PL0
max

, can be learnt by using the graphical lasso method with the sample covariance matrix

for Y − 1/d
∑d

i Yi,Y ∈ L0
avg, which is summarised in the following theorem.

Theorem 3. Let Y follows the multivariate Hüsler-Reiss distribution over the region L0
max,

then the sample covariance matrix, Σ̂(3), of Y −1/d
∑d

i Yi,Y ∈ L0
avg is a consistent estimator

for the covariance matrix Σ(3) = ÃB̃Ã⊤ such that Σ(3)1 = 0 and Σ(3) is the Moore-Penrose

pseudo-inverse of the matrix Θ in (10).
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The proof is simple: Y − 1/d
∑d

i Yi,Y ∈ Lu
avg follows the Gaussian distribution with

covariance ÃB̃Ã⊤, which is a direct result of the representation in (17). ÃB̃Ã⊤ is the Moore-

Penrose pseudo-inverse of Θ. Hence, the sample covariance Σ̂(3) is a consistant estimator of

the Moore-Penrose pseudo-inverse of Θ and we have Σ̂(3)1 = 0 by design.

Exploring the expression in (14) further, When Σ−1 = Θ+τdiag(1, 0, . . . , 0), the intensity

function will be given by

κ(x) = (2π)−(d−1)/2|Σ|−1/2τ−1/2 exp
{
−1

2
(x+ a)⊤Θ(x+ a)− (x1 + a1) +

1
2τ

}
.

Although above expression are not directly useful for learning the extremal graphical model,

they provide insights into the relationship between the extremal precision matrix Θ and the

proper covariance matrix Σ in (14). Moreover, it is important to note that the covariance

matrix Σ is not unique for a given Θ.

4 Structured Graphical Learning and Extremal Inde-

pendence

The main goal of this paper is using the estimated extremal covariance matrix Σ̂(1), Σ̂(2) and

Σ̂(3) to learn graphical structures for multivariate Pareto distribution, which can also guar-

antee of connectivity. In the case of disconnected components, we should able to interpreted

it as fully independence between the disconnected components. For multivariate Gaussian

distribution, when assuming the Gaussian density function f(·) is multivariate total positive

of order 2 (MTP2), that is

f(x ∨ y)f(x ∧ y) ≥ f(x)f(y).

Then, the Gaussian precision matrix Q has all non-positive off diagonal elements Qij ≤

0, i ̸= j. The MTP2 condition is a way imposing positive associations among variables.

For Gaussian models, MTP2 condition means all correlations and partial correlations are
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nonnegative. Röttger et al. (2023) proposed a similar concept for multivariate Pareto random

vector Y as well, which is called EMTP2, and they call Y is EMTP2 if and only if Y (k)

is MTP2 for all k = 1, . . . , d. If Y is EMTP2, then, the precision matrix Θ is a laplacian

matrix, i.e., Θ ∈ M = {M ∈ Rd×d : M1 = 0;Mij < 0, i ̸= j}. The EMTP2 condition is not

restrictive at all as one would expect positive associations for extreme random vectors and

there indeed many classic max-stable models that satisfy the EMTP2 condition, including

extremal logistic (Tawn, 1990) and extremal Dirichlet distributions (Coles and Tawn, 1991).

Indeed, if Θ is a laplacian matrix, the conditional mean of each component in W from (15)

defined over the hyperplane {w ∈ E : 1⊤w = 0} (Rue and Held, 2005) is

E[Wi|W−1] = − 1
Θii

∑
j:(i,j)∈E

ΘijWj, (18)

which is a weighted average among the neighbours of Wi with positive weights Θij, (i, j) ∈

E as −
∑

j:(i,j)∈E Θij = Θii > 0. This allows us to learn the graphical structure of the

multivariate Pareto distribution Y from the derivations of W from its overall mean, where

the overall mean is specified by the random component R in (15). Intuitively, if a rain storm

happens in a region, the graphical dependence structure measures the associations among

the derivations of the rain storm at each location from their average over the whole region.

Therefore, from now on, we can reasonably assume Θ is a laplacian matrix of the Hüsler-

Reiss graphical model of dimension d, and let λ = (λ1, . . . , λd) be its d eigenvalues. It is

well studied that the multiplicity of the zero eigenvalue of a laplacian matrix equals to the

number of disconnected components in the graph (Chung, 1997). For the extremal precision

matrix Θ, we have rank(Θ) = d − 1 and the multiplicity of the zero eigenvalue is 1, which

means the graph is connected (Hentschel et al., 2024; Engelke and Hitz, 2020). Kumar et al.

(2019) proposed a method to learn the Gaussian graphical model with spectral constraints,
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Sλ, over the eigenvalues λi, 1 = 1, . . . , d, where Sλ is specified as

Sλ = {{λi = 0}mi=1, c1 ≤ λm+1 ≤ · · · ≤ λd < c2}. (19)

The constants c1 and c2 are the chosen hyperparameters that represent the minimum and

maximum for the eigenvalues, and m is the number of disconnected components in the graph

G, which should be 1 for the Hüsler-Reiss graphical model.

When m > 1, laplacian matrices with eigenvalues in Sλ are block diagonal matrices with

m blocks, and the pesudo-inverse of the laplacian matrix is also a block diagonal matrix

with m blocks. For a Gaussian graphical model with such laplacian matrices, the graph

will be disconnected with m disconnected components, and disconnected components are

independent with each other. The problem of learning the precision matrix Θ giving matrix

S can be formulated as maximizing the following objective function (Kumar et al., 2019)

maximizeΘ log |Θ|† − tr (ΘS)− αh(Θ), (20)

where | · |† denotes the generalized determinant, tr(·) is the trace operator, h(Θ) is a L1 norm

penalty function on all off-diagonal elements of Θ, and α > 0 is a regularization parameter.

If we restrict the precision matrix Θ to be a block diagonal laplacian matrix with m blocks,

giving the matrix S is also a diagonal block matrix with m blocks. The precision matrix Θ̂

that maximizes the objective function in (20) will have the same block structure as S. This

can be shown by factorizing the term tr(ΘS) according to the block structure of S and take

Θ̂ =
∑d

i=m+1 λieie
⊤
i . Then, eie

⊤
i will have the same block structure as S.

Suppose now we have random vector X = (XA,XB) with exponential marginal tail,

where sets A and B form a partition, and X is in the max-domain attraction of the a max-

stable distribution with exponent measure Λ. Then, we call XAi
, i = 1, . . . ,m, are extremal

independent if

lim
n→∞

n2Pr(XA − log(n) ∈ CA,XB − log(n) ∈ CB) = ΛA(CA)× ΛB(CB) (21)
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where ΛI(·) = Λ({x ∈ E : xI ∈ ·, · ⊂ EI}) and EI = [−∞,∞]|I|\{−∞}. With the minimum

risk functional, we can have

lim
u→∞

Pr(XA − u ∈ CA,XB − u ∈ CB|min
i

Xi > u) =
ΛA(CA∩L0

min,A)×ΛB(CB∩L0
min,B)

ΛA(L0
min,A)ΛB(L0

min,B)
, (22)

where L0
min,I = {x ∈ EI : mini xi > 0}. Thus, we can bring all the components Xi into their

Hüsler-Reiss multivariate Pareto distribution with the minimum risk functional. Then, the

matrix S that can preserving the extreme independence information of the corresponding

extreme random vector YA and YB as diagonal block structure can be constructed as the

sample covariance matrix of X|mini Xi > u, where u is a large threshold.

This definition of extremal independence is different from the one defined in Engelke et al.

(2024, Proposition 5.1), where they defined the extremal independence through the infinite

exponent measure Λ. They call it extremal independence between components in A and B if

for any Y ∼ PR such that Λ(R) ∈ (0,∞), we have YA and YB are independent. They found

the extremal independence between YA and YB only exists when the joint exponent measure

put mass on the subspaces only, i.e., Λ(xA ̸= −∞A & xB ̸= −∞B) = 0, assuming Λ(C) is

finite over any Borel set, C, that bounds away from the infinity point {−∞}. Engelke et al.

(2024) and Strokorb (2020) showed its equivalency to the traditional extremal independence

that is the corresponding max-stable distributions with exponent measure Λ are independent.

However, if we use their definition of extremal independence and let Ra,ϵ = {x ∈ E : exa > ϵ},

ϵ > 0, a ∈ A, Λ(Ra,ϵ) ∈ (0,∞). Then, we have Λ(Ra,ϵ) = ΛA(R
A
a,ϵ) + ΛB(EB), where

RA
a,ϵ = {x ∈ EA : exa > ϵ}, since RA

a,ϵ and EB are the restricted sets of Ra,ϵ onto the subspaces

EA and EB and Λ only has positive mass on the subspaces, i.e., {−∞A}×EB∪EA×{−∞B}.

Therefore, we have ΛB(EB) ∈ (0,∞), which implies that marginally YB has positive mass at

the lower bound of the support, −∞B. With the same logic, we have ΛA(EA) ∈ (0,∞), which

further implies the exponent measure Λ is a finite measure over E . This result contradicts

with the assumption that Λ is an infinite measure.
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Instead, use our definition of extremal independence in (21), we can notice that the

definition of the joint exponent measure Λ should be defined as a product measure, i.e.,

Λ(CA × CB) = ΛA(CA)× ΛB(CB), whose support domain should be EA × EB, instead of E .

Given the infinite measure Λ and independence between YA and YB, the marginal exponent

measures ΛA and ΛB should also be infinite measures over their marginal support, otherwise

some joint support restriction should be imposed and the joint support domain is not a

product space any more. Assuming Λ is an infinite measure, our definition leads to the

removal of the mass on the lower bound of the support −∞A and −∞B, meaning there

is no mass on any subspaces {−∞A} × EB and EA × {−∞B}. This is consistent with

the independence definition in classic probability theory, and assuming the independence

between YA and YB, we should have the marginal exponent measures ΛA and ΛB first to

define the joint exponent measure Λ. The definition in (21) also extends natually to the case

of multiple components, m > 2. Unlike the extremal independence definition in Engelke et al.

(2024), the joint exponent measure should has the property that Λ((CA+uA)×(CB+uB)) =

exp(−uA − uB)Λ(CA × CB), where uA and uB are constants. One should notice that our

definition is not equivalent to the traditional extremal independence defined using max-

stable distributions. The intuition behind this is that the convergence of X by taking

threshold exceedances or pointwise maxima are different, just like we can have conditional

independence for multivaraite Pareto distributions but not for their corresponding max-

stable distributions. Further discussions on extremal independence is out of scope of this

paper. Next, we will use the sample covariance matrix of X|mini Xi > u, where u is a large

threshold, together with the structural graphical lasso method introduced later to infer the

independent components in the graph G.

To solve the optimisation problem in (20), we can reformulated it as the following mini-
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mization problem as in Kumar et al. (2019), termed as spectral graphical lasso,

minimizew,λ,U − log
∣∣Udiag(λ)U⊤∣∣

† + tr
(
Fw(Σ̂(i) + α(I − 11⊤))

)
+ β

2
∥Fw − Udiag(λ)U⊤∥2F

(23)

subject to λ ∈ Sλ,w > 0, U⊤U = I,

where ∥ · ∥F denotes the Frobenius norm, and F is a linear operator that transform w ∈

Rd×(d−1)/2
+ to a laplacian matrix as

(Fw)ij =


−wi+nj

, i > j
(Fw)ji, i < j

−
∑

i′ ̸=j(Fw)i′j, i = j.
(24)

The linear operator Fw is designed to ensure that Fw ∈ M. The last term in (23) ensures

that Fw converges to the matrix Udiag(λ)U⊤, where each column of U represents the or-

thogonal eigenvectors of Fw. This allows us to control the eigenvalues of Fw by penalising

it towards the desired group structure presented in Udiag(λ)U⊤ with the penalising parame-

ter β. The first term in (23) is the log-determinant of the precision matrix Θ, and the second

term is the trace of the product of Fw and the estimated covariance matrix Σ̂(i), with an

additional regularization term that promotes sparsity in w through the parameter α.

When we do clustering, we adopt an adaptive strategy for hyperparameter β inside the

optimizer, that is we increase the value of β to enforce connectivity, when the number of

zero eigenvalues in λ is larger than m, and decrease the value of β when the number of

zero eigenvalues in λ is smaller than m. By doing so, we can make sure the number of

disconnected components in the learnt graph is exactly m. In practice, we first used the

adaptive strategy to learn the graph clusters, and then, for each learnt graph cluster, we

learn the graph with a mild β, e.g., β = 1 to ensure fair estimation within each cluster.

Another way of identifying the number of independent components is to use the hierarchi-

cal clustering method, which is a well-know method for clustering (Murtagh and Contreras,

2017) in a data-driven approach. The hierarchical clustering method use a dissimilarity ma-
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trix to build a cluster tree. A naive way of constructing the dissimilarity matrix is to use

the extremal correlation matrix, χ, where χij is defined as follows,

χij = lim
u→∞

Pr(Xi > u|Xj > u). (25)

The extremal correlation χij measures the extremal dependence between two components,

Xi and Xj, and it is bounded between 0 and 1. To estimate the extremal correlation, we can

choose a high threshold u and use the empirical conditional probability to approximate it. If

χij = 0, thenXi andXj are asymptotical independent, otherwise they are called asymptotical

dependent. If Xi and Xj are extremal independent defined in (21), then χij = 0. Then, the

dissimilarity matrix can be constructed as Dij = 1− χij. The algorithms assume each point

is a cluster at the initial stage. Then, it combines the two closest clusters into a new cluster

until all points are in one cluster. The distance between two clusters here is chosen to be the

complete linkage function, i.e., the maximum Dij over all pairs of points in the two clusters.

In this next section, we start with a simulation study to showcase the performance of the

proposed spectral graphical lasso method in (23) and the hierarchical clustering method with

various threshold u in estimating the extremal correlation matrix χ in (25).

5 Simulation Study

We first examine the performance of the spectral graphical lasso in (23) together with the

hierarchical clustering method through simulation on various extreme graphical structures.

For this purpose, we randomly generated precision matrices Θ based on Barabśi–Albert (BA)

model (Albert and Barabási, 2002), which is an algorithms for generating random graphs

with a power-law degree distribution. The BA model contains various real-world graph

structures, including World Wide Web, citation network, and social network. It generates

graph in a way that, if a new node is added, it is more likely to connect to existing nodes that

already have a high degree (connections). The BA model has two parameters, the number
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of nodes, d, and a degree parameter q, which is the added number of edges when a new node

creates. If q = 1, then we will have a tree graph structure. Suppose now we have a graph

G = (V,E), the corresponding precision matrix, Θ, is generated by the following:

Θij =


−Unif(0.1, 5), (i, j) ∈ E, i > j

Θji, i < j
−
∑

i′ ̸=j Θi′j, i = j
(26)

This is the same approach that generates precision matrix as in Engelke et al. (2025) except

that we use 0.1 instead of 2 in their paper to allow for more flexibility. In our simulation

study, we randomly generate connected graphical structure, represented by the extremal

precision matrix Θ, with dimension d ranging from 3 to 10 and a random sampled q = 1 or

q = 2. Then, we randomly sample m = 3, 6, 9 disconnected components from the previously

generated graphs, and generates 100 datasets of Y ∼ PL0
min

with various replicates n. The

number of replicates, n, in each dataset is chosen such that n/d = 10, 50, 100. We use

the proposed method in (23) and the hierarchical clustering method based on the extremal

correlation matrix χ with threshold being the 20%, 50%, 80%, and 90% empirical quantiles.

The performance of the proposed methods is evaluated using the adjusted Rand index (ARI)

(Rand, 1971; Hubert and Arabie, 1985). Suppose, we have d variables in total, and a

true cluster partitioning of the data into m cluster sets, C1, . . . , Cm. The learnt cluster

partitioning consists of m′ cluster sets, C ′
1, . . . , C

′
m′ . ARI is defined as follows,

ARI = RI−RI
1−RI

, RI = a+b

(d2)

a = #
{
(i, j) : 1 ≤ i < j ≤ d,∃k1, ∃k2, s.t., i, j ∈ Ck1 ∩ C ′

k2

}
,

b = #
{
(i, j) : 1 ≤ i < j ≤ d,∄k1,∄k2, s.t., i, j ∈ Ck1 ∩ C ′

k2

}
,

RI =
∑m

i=1 (
#Ci
2 )

∑m′
j=1 (

#C′
i

2 )
(d2)

,

where a is the number of pairs of variables that are in the same cluster in both the true

and learnt cluster partitioning, and b is the number of pairs of variables that are in different
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clusters in both the true and learnt cluster partitioning. RI is the expected Rand index

(RI) under random clustering. RI measures cluster agreements based on the number of pairs

of variables that are consistently partitioned into the same or different clusters, and it is

bounded between 0 and 1, where 1 indicates perfect agreement between the true and learnt

cluster partitioning, and 0 indicates no agreement between the two cluster partitioning. ARI

is a corrected version of RI, which takes into account the randomness of grouping of elements.

ARI is bounded between −1 and 1, where 1 indicates perfect agreement between the true

and learnt cluster partitioning, 0 indicates the learnt clustering is only as effective as random

clustering, and negative values indicate the learnt clustering is worse than random cluster-

ing. Figure 1 shows boxplots of adjusted Rand indexes for each case of the pre-mentioned
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Figure 1: Boxplots of ARI for each case based on 100 simulated datasets using spectral
graphical lasso (Spectral) and hierarchical clustering method with threshold u being the
20% (Hierarchical 1), 50% (Hierarchical 2), 80% (Hierarchical 3) and 90% (Hierarchical 4)
empirical quantile, where n/d = 10, 50, 100 and m = 3, 6, 9.

simulation study, indicating the our proposed method based on spectral graphical lasso and

the hierarchical clustering method based on the extremal correlation matrix performs well

in terms of ARI across all cases. Moreover, the hierarchical clustering method with the

90% empirical quantile consistently yield better results compared with the case with lower

threhsold. With reasonable large enough dataset, the hierarchical clustering method with

90% empirical quantile and the spectral graphical lasso provide the best clustering results as
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ARIs are close to 1, which means almost perfect pairwise clustering agreements. As the sam-

ple size increases, the adjusted Rand index also shows improvements with less variabilities

across all cases.

As we have learned the graphical clustering structure, we now proceed to evaluate the

performance of the spectral graphical lasso in (23) against the EGlearn method within each

cluster. We generate 200 graphs from BA(d, q) model with a random generated precision

matrix Θ, where d = 5, 10, 20, 50, 100 and q = 1, 2. For each graph and precision matrix, we

generated 100 datasets of Y ∼ PL0
max

with various numbers of replicates, n, which is chosen

such that n/d = 5, 10, 50, 100. We used the proposed method in (23) with Σ̂(i), i = 1, 2, 3

to learn the extremal graphical structure, and compared it with the EGlearn method. The

performance of the proposed method is evaluated using F score, which is defined as

F score = 2#(E∩E′)
#E+#E′ , (27)

where E is the true edge set and E ′ is the learnt edge set. The F score is a measure of

prediction accuracy, which considers both the precision and the sensitivity of the prediction

to compute the score. The F score is bounded between 0 and 1, where 1 indicates perfect

prediction, and the F score is a good measure of performance for the graphical structure

learning problem, as it takes both false positives and false negatives cases into account.

Figure 2 shows the boxplots of F score for each cases based on different d, q, n and inference

method. Results show that the proposed method in (20) with Σ̂(i), i = 1, 2, 3 all yield similar

performance as the EGlearn method across all the cases in terms of the F score. Moreover,

as n/d increases, the F score also increases and shows less variability.

As the F scores for all the four methods are computed based on each dataset we simulated,

the F scores are naturally paired with each other across the four methods we evaluated here.

One would expect different precision matrix Θ, which encodes the graph structure, and

different sample size will have major impact on the F score. Therefore, we also evaluate the
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Figure 2: Boxplots of F score for each case based on 200 graphs and 100 simulated datasets
for each graph using methods in (20) with Σ̂(1) (red), Σ̂(2) (blue) and Σ̂(3) (green) and the
EGlearn method (orange), where n/d = 5, 10, 20, 50, 100, q = 1, 2, and d = 5, 10, 20, 50, 100.

performance differences between our methods and the EGlearn method given a particular

precision matrix Θ and sample size. To do this, we conduct a paired t-test on the F scores of

the proposed method using Σ̂(i) and the EGlearn method for each i = 1, 2, 3. The alternative

hypothesis is that the F score of the proposed method using Σ̂(i) is greater than the F score

of the EGlearn method. The significance level is set at 0.05. The results are shown in

Figure 3. Our proposed method outperforms the EGlearn method in most cases, especially

when q = 2 with high dimensions, and q = 1 with lower dimensions and smaller sample

size. With smaller sample size, the EGlearn method performs not as good as our method.

In lower dimensional cases, our proposed method using Σ̂(2) and Σ̂(3) performs better than

using Σ̂(1). In addition, we also conduct similar paired t-test with alternative hypothesis

that the F score of the proposed method using Σ̂(i) is less than the F score of the EGlearn

method. The results are shown in Figure 4. The EGlearn method outperforms our methods

only when the graph structure is a tree, i.e., q = 1, and the sample size is large. As we have
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Figure 3: Barplots of the proportion of the F score of the proposed method using Σ̂(i) is
greater than the F score of the EGlearn method for each case based on 200 graphs and 100
simulated datasets for each graph using confidence level, 0.05, where n/d = 5, 10, 20, 50, 100,
q = 1, 2, and d = 5, 10, 20, 50, 100.

compared the performances of the four methods, one may ask how much the performance

differences between our methods and the EGlearn method are. To answer this question,

we compute the average difference in 100% between the F score of simulation results using

method based on Σ̂(i) and the EGlearn method in each cases, where i = 1, 2, 3. The results

are shown in Table 1. As expected from the comparison using above boxplots, Table 1 shows
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Figure 4: Barplots of the proportion of the F score of the proposed method using Σ̂(i) is less
than the F score of the EGlearn method for each case based on 200 graphs and 100 simulated
datasets for each graph using confidence level, 0.05, where n/d = 5, 10, 20, 50, 100, q = 1, 2,
d = 5, 10, 20, 50, 100, i = 1(red),2(blue),3(green). The red dashed line indicates 50% level.

our methods obtain significant performance gains against the EGlearn method when either
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sample size is limited (n/d < 10) or dimension is high (d > 10), especially for the case q = 2.

The average F score differences can be as high as 36.35 out of 100 when d = 100, n/d = 5.

However, as sample size increases, the advantage of our method over the EGlearn method

decreases. In cases when the EGlearn method outperforms our method as indicated by

Figure 4, the average F score differences is considered small (less than 10%). Therefore, in

summary, our method outperforms the EGlearn method significantly when the sample size

is relatively small or dimension is relatively high. The proposed method using Σ̂(3) obtains

a larger performance gains than using Σ̂(1) and Σ̂(2), which is consistent with the results

shown in Figure 3 and Figure 4. A byproduct of the estimators Σ̂(i), i = 1, 2, 3 is that they

Table 1: Average difference in F scores (×100) using method based on Σ̂(i) and the EGlearn
method in each cases, where i = 1, 2, 3.

q = 1 q = 2

n/d\d 5 10 20 50 100 5 10 20 50 100

5
Σ̂(1) 14.56 19.29 23.35 23.89 20.13 -3.16 5.53 11.69 21.04 26.58

Σ̂(2) 15.79 20.40 23.88 24.00 20.14 2.39 6.43 12.28 21.34 26.72

Σ̂(3) 16.29 22.40 25.84 25.04 20.72 3.19 10.52 18.44 29.48 36.35

10
Σ̂(1) 11.01 14.32 18.00 17.99 14.40 -6.55 4.10 11.28 19.89 24.24

Σ̂(2) 12.41 15.23 18.47 18.14 14.41 2.32 5.31 11.68 20.29 24.41

Σ̂(3) 12.04 15.91 19.16 18.37 14.44 2.83 8.89 17.03 26.93 31.40

50
Σ̂(1) -1.63 0.94 1.37 -0.62 -3.29 -17.00 -6.72 3.42 8.14 8.46

Σ̂(2) 1.96 2.52 1.65 -0.57 -3.28 0.56 3.64 7.20 9.12 8.84

Σ̂(3) -0.62 0.46 0.37 -1.35 -3.77 0.10 5.13 9.37 11.01 10.47

100
Σ̂(1) -6.42 -4.95 -4.60 -5.91 -7.64 -19.99 -13.98 -4.35 2.51 4.67

Σ̂(2) -2.48 -2.52 -4.29 -5.89 -7.64 0.11 2.13 3.82 4.54 5.24

Σ̂(3) -5.74 -5.27 -5.90 -6.84 -8.19 -1.18 2.01 4.03 4.78 5.68

can be used to estimate the Γ using the transformation Γ = diag(Σ)1⊤ + 1diag(Σ)⊤ − 2Σ

by replacing the matrix with corresponding estimates. We can use the mean squared error

(MSE) of the estimated Γ to evaluate the performance of the estimators. The MSE is defined

as average of the squared differences between every entries of the estimated Γ and the true
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Γ. Table 2 shows the results of the average MSE of the estimated Γ using the estimators

Σ̂(i), i = 1, 2, 3 and the estimated laplacian matrix returned by the optimizer in (20) using

Σ̂(3), denoted by Fw0. Notice that the estimated variogram matrix using Σ̂(2) will produce

the same estimator as the Γ̂ in (13). The results show that the proposed method in (20)

with Σ̂(i), i = 1, 2, 3 all yield similar performance as the EGlearn method across all the cases

in terms of MSE. Surprisingly, when the graph structure is a tree, i.e, (q=1), the MSE is

significantly larger than the MSE for the case q = 2. When q = 2, the mse is much smaller.

Our results also show that the proposed method in (20) with Σ̂(i), i = 1, 2, 3 all yield similar

Table 2: Mean squared error of the estimated Γ averaged across the 200 simulated graphs
and 100 datasets for each graph.

q = 1 q = 2

n/d\d 5 10 20 50 100 5 10 20 50 100

5

Σ̂(3) 2.41 4.15 6.90 9.33 11.14 0.15 0.11 0.07 0.06 0.05
Fw0 3.06 4.47 7.73 7.71 9.72 0.10 0.07 0.07 0.06 0.05

Σ̂(2) 3.52 4.83 5.70 10.55 10.77 0.13 0.07 0.06 0.06 0.05

Σ̂(1) 2.98 4.76 6.71 10.07 10.19 0.09 0.07 0.05 0.05 0.05

10

Σ̂(3) 2.83 3.99 6.70 9.15 11.00 0.19 0.12 0.08 0.08 0.06
Fw0 2.94 4.36 7.45 7.59 9.54 0.11 0.07 0.08 0.07 0.06

Σ̂(2) 3.36 4.59 5.49 10.30 10.57 0.12 0.06 0.07 0.06 0.06

Σ̂(1) 3.45 4.62 6.66 9.91 9.98 0.07 0.08 0.06 0.06 0.06

50
Σ̂(3) 2.70 3.89 6.52 9.01 10.87 0.22 0.13 0.08 0.10 0.07
Fw0 2.78 4.27 7.28 7.45 9.41 0.10 0.07 0.07 0.09 0.06

Σ̂(2) 3.20 4.42 5.31 10.22 10.43 0.17 0.06 0.07 0.07 0.07

Σ̂(1) 3.24 4.43 6.51 9.81 9.83 0.10 0.08 0.05 0.05 0.06

100
Σ̂(3) 2.69 3.86 6.51 9.21 10.98 0.23 0.14 0.07 0.09 0.07
Fw0 2.74 4.25 7.23 7.45 9.37 0.09 0.07 0.07 0.09 0.06

Σ̂(2) 3.19 4.39 5.27 10.15 10.36 0.17 0.04 0.06 0.08 0.07

Σ̂(1) 3.22 4.41 6.51 9.63 9.77 0.09 0.07 0.05 0.05 0.06

performance as the EGlearn method across all the cases in terms of computational time.

The computational time increases as d increases. Though EGlearn method needs to learn

d sub-graphs, our proposed inference method has much more optimization constraints, Sλ,
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and also need to update the orthogonal matrix U via singular value decomposition of matrix

Fw in each iteration in (20). However, our method can still be as computationally efficient,

and thus can be used to learn the graphical structure of multivariate Pareto distribution

with high dimensions.

6 Applications

In our application, we use two real datasets including one that has been demonstrated in

Engelke and Hitz (2020); Hentschel et al. (2024), to illustrate our proposed method, which

is the Danube river discharge network and is initially studied by Asadi et al. (2015). The

second dataset is the stock index in major stock markets around the globe. The Danube

river network consists of 31 nodes (stations) with daily 428 samples spanning from 1960

to 2010 after being declustered to remove the temporal clusters. The river flow network is

shown in Figure 5 at the top left with edge thicknesses indicating the average flow volume

between nodes and arrows indicating the flow directions. We first transform the data to the

standard exponential margins, and select the threshold, u, to be the 80% quantile in Lu
min

to identify the clusters as in (22) for spectral graphical lasso method and also in (25) for

hierarchical clustering method. Once we learnt the clusters, we use 80% empirical quantiles

as u within the estimator Σ̂(3) to learn the individual graph within each connected graphical

component. We set the number of clusters to be m = 1, 2, . . . , 5, and we plot the heatmap

of the estimated χ matrix using 80% empirical quantile as the threshold in (25), together

with the learnt clustering structured in Figure 5 shown as colored bars for the rows (using

hierarchical clustering method) and columns (using spectral graphical lasso). Asm = 2, these

two methods yield the same clustering structure. For m = 3, 4, 5, the RI index between the

two estimated clustering structure is maximized at m = 4, which is 0.51. The hierarchical

clustering method tends to cluster station 1, 13, 14, 15, 16, 17, 18, and 19 together as a single
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cluster but not with station 2, while the spectral graphical lasso method tends to cluster

station 1, 13, 28,29,30,31 together as a single cluster. According to the original river flow

network, we found the spectral graphical lasso method yileds more interpretable clustering

structuer as stations 1, 13, 28, 29, 30, and 31 are all connected and can be regarded as a single

river branch, while stations 1, 13, 14, 15, 16, 17, 18, and 19 are disconnected without station

2. The estimated graph using the spectral graphical lasso method is shown in the second and

third column of Figure 5 with colors indicating different clusters for m = 1, 2, 3, 4. The learnt

graph largly ensemble the original river flow network, and the disconnected components are

the points that are far away from the main river network in the upper stream with small flow

volume. The major river branches are identified as a single cluster in most cases, and the

most right river branch is identified as a cluster by itself in most cases, which is consistent

with the fact that its flow does not contribute to the river network on its left side.

The stock markets data contains stock index in 16 major stock exchanges around the

world, including Dow Jones Index (DJI) and SP500, which are the two most important

stock indexes in the US (denoted by NY: SP500 and NY: DJI), Nikkei225 (N225) in Japan,

FTSE100 in the UK, DAX in Germany, CAC40 in France, HSI in Hong Kong, ASX 200

in Australia and so on as shown in Figure 6. The dataset is obtained from Yahoo finance

and contains daily logarithmic return from 2000 to March in 2025. For each index, we fit a

time series model, ARIMA(2,1,2), to remove the trend and auto-correlation from the data.

Then, we obtain the fitted residuals as anomalies. We then transform the anomalies to the

standard exponential margins, and select the threshold, u, to be the 90% empirical quantiles

when estimate the χ matrix and implement spectral graphical lasso method for clustering

as well as doing individual graph learning using spectral graphical lasso method.

The results are shown in Figure 6 as a circle according to their timezones with different

colors representing different clusters. Noticed that we moved the trading date of the North
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Figure 5: Estimated graph with number of clusters m = 1, 2, 3, 4 from the top left panel
to the bottom right panel in the second and third columns with colors indicate different
clusters within plot. The original river flow network is shown on the top left with line widths
indicating the average flow volume between the two nodes and arrows indicating the flow
directions.The heatmap at the bottom left shows the estimated χ matrix with the clustering
structure shown as colored bars for the rows (using hierarchical clustering method) and
columns (using spectral graphical lasso).

America forward by 1 day to match the trading date of the Asia and Europe. We also

plot the heatmap of the estimated χ matrix together with the colored bar representing the

clusters similar as in Figure 5. The clusters patterns are more presented in the heatmap than

in the Danube river data as two methods yield same clustering structures up to m = 4. The

two Chinese stock indexes (Shenzhen and Shanghai) are always clustered together showing

unique market characteristics that are different from the rest developed markets. The (North

and South) American stock indexes are clustered together since they are all traded in the

same timezone and absorbing similar market shocks at the same time. The developed Asian

stock indexes are also clustered together as they are in similar timezones, and have similar
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market characteristics. The learnt graphical structure seem to suggest the trading timezone

can be regarded as the major common factor for the joint extreme market fluctuations,

though this has to be further investigated.
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Figure 6: The estimated graphs with number of clusters m = 1, 2, 3, 4 from the second panel
on the top to the right panel on the bottom. The colors of the nodes and edges indicate
different clusters within each graph. The first panel on the top left shows the heatmap of the
estimated χ matrix with the clustering structure shown as colored bars for the rows (using
hierarchical clustering method) and columns (using spectral graphical lasso).

7 Conclusion

In this paper, we proposed a new method to learn the graphical structure of multivariate

Hüsler-Reiss Pareto distribution under the assumption of EMTP2. We also justifies the

usage of the proposed method as a clustering method for the Hüsler-Reiss multivariate

Pareto distribution. To use the method, we propose three extremal covariance estimator,

Σ̂(i), i = 1, 2, 3, where Σ̂(3) is newly proposed, Σ̂(1) is originated from Wan and Zhou (2025),
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and Σ̂(2) is used in Röttger et al. (2023). While those estimators are established based on

different support domains, i.e., L0
max and Lavg0 , we showed that as long as these restricted

set is build based on the risk functional satisfying the linearity condition in (1), then the

corresponding multivariate Pareto distribution will have a exponent measure with the same

extreme precision matrix. The proposed method is computationally efficient and can be used

to learn the graphical structure of multivariate Pareto distribution with high dimensions

when comparing with the state of art method EGlearn (Engelke et al., 2025) for learning

extreme graphical structure. Our methods outperforms the EGlearn method significantly

when the sample size is small or dimension is high.

For clustering, we define the extremal independence based on the classic independence

definition, as contract to the extremal independence introduced by (Engelke et al., 2024),

where we showed their definition is contradictory and one need to remove the mass of the

exponent measure Λ on the subspaces instead of only putting mass on the subspaces. To

learn the independent multivariate Pareto components, we proposed two method, one is a

hierarchical clustering method using the empirical extremal correlation matrix, and another

is the spectral graphical lasso. Our method can consistently recover the true clustering

structure as demonstrated by the simulation study. The proposed method is also applied

to two real datasets, including the Danube river network and stock markets network, to

illustrate its performance. The learnt clustered graphical structure is meaningful and can be

sensibly interpreted. In our future work, we could investigate the theoretical asymptotical

properties of the proposed method and explore the possibility of extending the method to

other multivariate Pareto distributions. Also, as pointed out earlier, the two definition of

extremal independence built upon the max-stable distribution (the traditional definition)

and the definition based on the infinite exponent measure through the multivariate Pareto

distribution, should be also further investigated. Possible way to look at it is through the
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convergence of the distribution ofX towards its extreme limit, whether via pointwise maxima

or the threshold exceedance.
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models through matrix completions. Journal of the American Statistical Association pp.

1–25.

Hubert, L. and Arabie, P. (1985) Comparing partitions. Journal of Classification 2, 193–218.

Kabluchko, Z., Schlather, M. and de Haan, L. (2009) Stationary max-stable fields associated

to negative definite functions. Annals of Probability 37, 2042–2065.

36



Kumar, S., Ying, J., de Miranda Cardoso, J. V. and Palomar, D. (2019) Structured graph

learning via laplacian spectral constraints. Advances in neural information processing

systems 32.

Lauritzen, S., Uhler, C. and Zwiernik, P. (2019) Maximum likelihood estimation in gaussian

models under total positivity. Annals of Statistics 47, 1835–1863.

Murtagh, F. and Contreras, P. (2017) Algorithms for hierarchical clustering: an overview,

ii. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7, e1219.

Papastathopoulos, I. and Strokorb, K. (2016) Conditional independence among max-stable

laws. Statistics & Probability Letters 108, 9–15.

Rand, W. M. (1971) Objective criteria for the evaluation of clustering methods. Journal of

the American Statistical Association 66, 846–850.

Resnick, S. I. (2008) Extreme values, regular variation, and point processes. Volume 4.

Springer Science & Business Media.
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A Proofs of Theorems and Lemmas

A.1 Proof of Theorem 1

Proof. We begin the proof by showing the first statement holds given Y is a Pareto pro-

cess defined in (2), followed by showing all the statements are equivalent. First, we have

Pr(r(Y ) > 0) = Λ({x ∈ C0 : r(x) > 0} ∩ Cr)/Λ(Cr) = 1 > 0. Let A be a measurable set in

C0, then, we have

Pr(Y − u ∈ A|r(Y ) > u) = Λ({x ∈ C0 : r(x) > u, x ∈ A+ u})/Λ({x ∈ C0 : r(x) > u})
= Λ(u+ {x ∈ C0 : r(x) > 0, x ∈ A})/Λ(u+ {x ∈ C0 : r(x) > 0})
= Pr(Y ∈ A)

. Next, we show the first statement implies the second statement. With A = {x ∈ C0 :

r(x) > v}, v ≥ 0, we have Pr(Y − u ∈ A|r(Y ) > u) = Pr(r(Y ) > v + u|r(Y ) > u) =

Pr(r(Y ) > v). Thus, Pr(r(Y ) > v + u) = Pr(r(Y ) > u)Pr(r(Y ) > v), which leads to

Pr(r(Y ) > u) = exp(−u), u ≥ 0. To prove r(Y ) and Y − r(Y ) are independent, we let

A = {x ∈ C0 : x− r(x) ∈ B}, and we have

Pr(Y − r(Y ) ∈ B, r(Y ) > u) = Pr(Y ∈ A, r(Y ) > u)

= Pr(Y − u ∈ A, r(Y ) > u)

= Pr(Y ∈ A)Pr(r(Y ) > u)

= Pr(Y − r(Y ) ∈ B)Pr(r(Y ) > u).

To prove the equivalency between the second and third statement, we define the set Av,B =

{x ∈ C0 : r(x) ≥ v, x− r(x) ∈ B}, where v ≥ 0 and B ∈ {x ∈ C0 : r(x) = 0} measurable. We

have Pr(Y ∈ Av,B) = Pr(r(Y ) ≥ v)Pr(Y − r(Y ) ∈ B) = exp(−v)Pr(Y − r(Y ) ∈ B). Notice

that, u+Av,B = Av+u,B, we have, Pr(Y ∈ u+Av,B) = exp(−u)Pr(Y ∈ Av,B). The sets Av,B

forms a π−system, and hence, the condition Pr(Y ∈ u+ A) = exp(−u)Pr(Y ∈ A) holds for

all measurable set A. Now, it remains to prove the equivalency between the third and the

first statement. Let A ∈ C0 be a measurable set and u ≥ 0, then, we have

Pr(Y − u ∈ A|r(Y ) > u) = Pr(Y − u ∈ A, r(Y ) > u)/Pr(r(Y ) > u)

= exp(−u)Pr(Y ∈ A, r(Y ) > 0)/ exp(−u)Pr(r(Y ) > 0) = Pr(Y ∈ A).

It remains to show that if

Pr(X − u ∈ ·|r(X) > u) → Pr(Y ∈ ·), u → ∞.
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, Y is either a Pareto process or Pr(r(Y ) = 0) = 1. Since the distribution of Y and

Y − r(Y ) uniquely determines the distribution of Y , each of the statements define the

same Pareto process Y . Now, we need to verify the conditons in the first statement. The

condition Pr(X − u ∈ {x ∈ C0 : r(x) ≥ 0}|r(X) > u) → Pr(r(Y ) ≥ 0), u → ∞. Therefore,

Pr(r(Y ) ≥ 0) = 1. Assume, Pr(r(Y ) = 0) < 1, then, we have Pr(r(Y ) > 0) > 0. Let

u1, u2 ≥ 0, then

Pr(X − u1 − u2 ∈ Av,B, r(X) > u2 + u1|r(X) > u1)

=Pr(X − u1 − u2 ∈ Av,B|r(X) > u1 + u2)Pr(r(X) > u1 + u2|r(X) > u1)

⇒Pr(Y − u2 ∈ Av,B, r(Y ) > u2) = Pr(Y ∈ Av,B)Pr(r(Y ) > u2)

Since the set Av,B with Pr(r(Y ) = v) = Pr(Y − r(Y ) ∈ ∂B) = 0 forms a π−system, we have

Pr(Y − u2 ∈ ·|r(Y ) > u2) = Pr(Y ∈ ·). Thus, Y is a Pareto process defined in (2).

B Simulation Study and Applications

q = 1 q = 2
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Figure 7: Boxplots of computational time in seconds for each cases and methods as in
Figure 2.
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